scholarly journals Qubit-based momentum measurement of a particle

2021 ◽  
Vol 75 (10) ◽  
Author(s):  
Bernd Konrad ◽  
Fabio Di Pumpo ◽  
Matthias Freyberger

Abstract  An early approach to include pointers representing measurement devices into quantum mechanics was given by von Neumann. Based on this idea, we model such pointers by qubits and couple them to a free particle, in analogy to a classical time-of-flight arrangement. The corresponding Heisenberg dynamics leads to pointer observables whose expectation values allow us to reconstruct the particle’s momentum distribution via the characteristic function. We investigate different initial qubit states and find that such a reconstruction can be considerably simplified by initially entangled pointers. Graphical abstract

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Takuya Okuda ◽  
Yutaka Yoshida

Abstract We compute by supersymmetric localization the expectation values of half-BPS ’t Hooft line operators in $$ \mathcal{N} $$ N = 2 U(N ), SO(N ) and USp(N ) gauge theories on S1 × ℝ3 with an Ω-deformation. We evaluate the non-perturbative contributions due to monopole screening by calculating the supersymmetric indices of the corresponding supersymmetric quantum mechanics, which we obtain by realizing the gauge theories and the ’t Hooft operators using branes and orientifolds in type II string theories.


Author(s):  
SILVIU GUIASU

A solution of n-person games is proposed, based on the minimum deviation from statistical equilibrium subject to the constraints imposed by the group rationality and individual rationality. The new solution is compared with the Shapley value and von Neumann-Morgenstern's core of the game in the context of the 15-person game of passing and defeating resolutions in the UN Security Council involving five permanent members and ten nonpermanent members. A coalition classification, based on the minimum ramification cost induced by the characteristic function of the game, is also presented.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342030 ◽  
Author(s):  
KYRIAKOS PAPADODIMAS ◽  
SUVRAT RAJU

We point out that nonperturbative effects in quantum gravity are sufficient to reconcile the process of black hole evaporation with quantum mechanics. In ordinary processes, these corrections are unimportant because they are suppressed by e-S. However, they gain relevance in information-theoretic considerations because their small size is offset by the corresponding largeness of the Hilbert space. In particular, we show how such corrections can cause the von Neumann entropy of the emitted Hawking quanta to decrease after the Page time, without modifying the thermal nature of each emitted quantum. Second, we show that exponentially suppressed commutators between operators inside and outside the black hole are sufficient to resolve paradoxes associated with the strong subadditivity of entropy without any dramatic modifications of the geometry near the horizon.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850186 ◽  
Author(s):  
Hong-Yi Su ◽  
Jing-Ling Chen

It was known that a free, non-relativistic particle in a superposition of positive momenta can, in certain cases, bear a negative probability current — hence termed quantum backflow. Here, it is shown that more variations can be brought about for a free Dirac particle, particularly when negative-energy solutions are taken into account. Since any Dirac particle can be understood as an antiparticle that acts oppositely (and vice versa), quantum backflow is found to arise in the superposition (i) of a well-defined momentum but different signs of energies, or more remarkably (ii) of different signs of both momenta and energies. Neither of these cases has a counterpart in non-relativistic quantum mechanics. A generalization by using the field-theoretic formalism is also presented and discussed.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

In this chapter, the main features of quantum theory are presented. The chapter begins with a historical account of the invention of quantum mechanics. The meaning of position and momentum in quantum mechanics is discussed and non-commuting operators are introduced. The Schrödinger equation is presented and solved for a free particle and for a harmonic oscillator potential in one dimension. The meaning of the wavefunction is considered and the probabilistic interpretation is presented. The mathematical machinery and language of quantum mechanics are developed, including Hermitian operators, observables and expectation values. The uncertainty principle is discussed and the uncertainty relations are presented. Scattering and tunnelling by potential wells and barriers is considered. The use of variational principles to estimate ground state energies is explained and illustrated with a simple example.


Author(s):  
Jeffrey A. Barrett

The standard von Neumann-Dirac formulation of quantum mechanics is presented as a set of five basic rules. We discuss each rule is discussed in turn paying particular attention to the conceptual history of the theory. Of central importance is the standard interpretation of states (the eigenvalue-eigenstate link) and the dynamical laws of the theory (the random collapse dynamics and the deterministic linear dynamics) and how the interpretation and dynamics work together to predict and explain the results of basic quantum experiments. While the focus is on the behavior of electrons, we also briefly consider how the theory uses the same mathematical formalism to treat other phenomena like the behavior of neutral K mesons and qbits in a quantum computer.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1219
Author(s):  
Zeyi Shi ◽  
Sumiyoshi Abe

Weak invariants are time-dependent observables with conserved expectation values. Their fluctuations, however, do not remain constant in time. On the assumption that time evolution of the state of an open quantum system is given in terms of a completely positive map, the fluctuations monotonically grow even if the map is not unital, in contrast to the fact that monotonic increases of both the von Neumann entropy and Rényi entropy require the map to be unital. In this way, the weak invariants describe temporal asymmetry in a manner different from the entropies. A formula is presented for time evolution of the covariance matrix associated with the weak invariants in cases where the system density matrix obeys the Gorini–Kossakowski–Lindblad–Sudarshan equation.


Sign in / Sign up

Export Citation Format

Share Document