scholarly journals Mining large-scale human mobility data for long-term crime prediction

2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Cristina Kadar ◽  
Irena Pletikosa
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David March ◽  
Kristian Metcalfe ◽  
Joaquin Tintoré ◽  
Brendan J. Godley

AbstractThe COVID-19 pandemic has resulted in unparalleled global impacts on human mobility. In the ocean, ship-based activities are thought to have been impacted due to severe restrictions on human movements and changes in consumption. Here, we quantify and map global change in marine traffic during the first half of 2020. There were decreases in 70.2% of Exclusive Economic Zones but changes varied spatially and temporally in alignment with confinement measures. Global declines peaked in April, with a reduction in traffic occupancy of 1.4% and decreases found across 54.8% of the sampling units. Passenger vessels presented more marked and longer lasting decreases. A regional assessment in the Western Mediterranean Sea gave further insights regarding the pace of recovery and long-term changes. Our approach provides guidance for large-scale monitoring of the progress and potential effects of COVID-19 on vessel traffic that may subsequently influence the blue economy and ocean health.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Kota Tsubouchi ◽  
Naoya Fujiwara ◽  
Takayuki Wada ◽  
Yoshihide Sekimoto ◽  
...  

Abstract While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the temporal changes in human mobility behavior, social contact rates, and their correlations with the transmissibility of COVID-19, using mobility data collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 50%, resulting in a 70% reduction of social contacts in Tokyo, showing the strong relationships with non-compulsory measures. Furthermore, the reduction in data-driven human mobility metrics showed correlation with the decrease in estimated effective reproduction number of COVID-19 in Tokyo. Such empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to contain the disease.


2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiao Li ◽  
Haowen Xu ◽  
Xiao Huang ◽  
Chenxiao Guo ◽  
Yuhao Kang ◽  
...  

AbstractEffectively monitoring the dynamics of human mobility is of great importance in urban management, especially during the COVID-19 pandemic. Traditionally, the human mobility data is collected by roadside sensors, which have limited spatial coverage and are insufficient in large-scale studies. With the maturing of mobile sensing and Internet of Things (IoT) technologies, various crowdsourced data sources are emerging, paving the way for monitoring and characterizing human mobility during the pandemic. This paper presents the authors’ opinions on three types of emerging mobility data sources, including mobile device data, social media data, and connected vehicle data. We first introduce each data source’s main features and summarize their current applications within the context of tracking mobility dynamics during the COVID-19 pandemic. Then, we discuss the challenges associated with using these data sources. Based on the authors’ research experience, we argue that data uncertainty, big data processing problems, data privacy, and theory-guided data analytics are the most common challenges in using these emerging mobility data sources. Last, we share experiences and opinions on potential solutions to address these challenges and possible research directions associated with acquiring, discovering, managing, and analyzing big mobility data.


Author(s):  
Hengfang Deng ◽  
Daniel P. Aldrich ◽  
Michael M. Danziger ◽  
Jianxi Gao ◽  
Nolan E. Phillips ◽  
...  

AbstractMajor disasters such as extreme weather events can magnify and exacerbate pre-existing social disparities, with disadvantaged populations bearing disproportionate costs. Despite the implications for equity and emergency planning, we lack a quantitative understanding of how these social fault lines translate to different behaviours in large-scale emergency contexts. Here we investigate this problem in the context of Hurricane Harvey, using over 30 million anonymized GPS records from over 150,000 opted-in users in the Greater Houston Area to quantify patterns of disaster-inflicted relocation activities before, during, and after the shock. We show that evacuation distance is highly homogenous across individuals from different types of neighbourhoods classified by race and wealth, obeying a truncated power-law distribution. Yet here the similarities end: we find that both race and wealth strongly impact evacuation patterns, with disadvantaged minority populations less likely to evacuate than wealthier white residents. Finally, there are considerable discrepancies in terms of departure and return times by race and wealth, with strong social cohesion among evacuees from advantaged neighbourhoods in their destination choices. These empirical findings bring new insights into mobility and evacuations, providing policy recommendations for residents, decision-makers, and disaster managers alike.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190532 ◽  
Author(s):  
Takahiro Yabe ◽  
Kota Tsubouchi ◽  
Naoya Fujiwara ◽  
Yoshihide Sekimoto ◽  
Satish V. Ukkusuri

Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mobility trajectories of over 1.9 million mobile phone users across three countries before, during and after five major disasters. We find that, despite the diversity in socio-economic characteristics among the affected regions and the types of hazards, population recovery trends after significant displacement resemble similar patterns after all five disasters. Moreover, the heterogeneity in initial and long-term displacement rates across communities in the three countries were explained by a set of key common factors, including the community’s median income level, population, housing damage rates and the connectedness to other cities. Such insights discovered from large-scale empirical data could assist policymaking in various disciplines for developing community resilience to disasters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253901
Author(s):  
Yatang Lin ◽  
Fangyuan Peng

The COVID-19 pandemic has become a long-term crisis that calls for long-term solutions. We combined an augmented SEIR simulation model with real-time human mobility data to decompose the effects of lockdown, travel bans and effective testing measures in the curtailment of COVID-19 spread in China over different time horizons. Our analysis reveals that the significant growth in the detection rate of infectious cases, thanks to the expansion in testing efficiency, were as effective as city lockdowns in explaining the reduction in new infections up to mid-March. However, as we extended the analysis to July, increasing the detection rate to at least 50% is the only reliable way to bring the spread under control.


Sign in / Sign up

Export Citation Format

Share Document