scholarly journals Non-invasive identification of textile fibres using near-infrared fibre optics reflectance spectroscopy and multivariate classification techniques

2022 ◽  
Vol 137 (1) ◽  
Author(s):  
Diego Quintero Balbas ◽  
Giancarlo Lanterna ◽  
Claudia Cirrincione ◽  
Raffaella Fontana ◽  
Jana Striova

AbstractThe identification of textile fibres from cultural property provides information about the object's technology. Today, microscopic examination remains the preferred method, and molecular spectroscopies (e.g. Fourier transform infrared (FTIR) and Raman spectroscopies) can complement it but may present some limitations. To avoid sampling, non-invasive fibre optics reflectance spectroscopy (FORS) in the near-infrared (NIR) range showed promising results for identifying textile fibres; but examining and interpreting numerous spectra with features that are not well defined is highly time-consuming. Multivariate classification techniques may overcome this problem and have already shown promising results for classifying textile fibres for the textile industry but have been seldom used in the heritage science field. In this work, we compare the performance of two classification techniques, principal component analysis–linear discrimination analysis (PCA-LDA) and soft independent modelling of class analogy (SIMCA), to identify cotton, wool, and silk fibres, and their mixtures in historical textiles using FORS in the NIR range (1000–1700 nm). We built our models analysing reference samples of single fibres and their mixtures, and after the model calculation and evaluation, we studied four historical textiles: three Persian carpets from the nineteenth and twentieth centuries and an Italian seventeenth-century tapestry. We cross-checked the results with Raman spectroscopy. The results highlight the advantages and disadvantages of both techniques for the non-invasive identification of the three fibre types in historical textiles and the influence their vicinity can have in the classification.

2020 ◽  
Vol 62 (3) ◽  
pp. 144-151 ◽  
Author(s):  
S Sfarra ◽  
E Cheilakou ◽  
P Theodorakeas ◽  
C Ibarra-Castanedo ◽  
H Zhang ◽  
...  

The present study discusses the experimental physicochemical results obtained from the historical vaulted ceilings of an ancient church located in central Italy. Infrared thermography (IRT) in the active configuration was used to map subsurface defects caused by a seismic event and to discover buried structures, while the visible and near-infrared (VIS-NIR) fibre-optics diffuse reflectance spectroscopy (FORS) technique was applied to identify the pigments of wall paintings decorating the vault. Historical photographs are useful to readers in order to clarify the state of conservation before and after the earthquake that took place in 2009. The combination of the experimental results can be useful in restoration processes.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2255-2261 ◽  
Author(s):  
Yivlialin ◽  
Galli ◽  
Raimondo ◽  
Martini ◽  
Sassella

Reflectance spectroscopy in the ultraviolet (UV), visible (Vis), and near infrared (NIR) range is widely applied to art studies for the characterization of paints and pigments, with the advantages of non-invasive techniques. Isolating and detecting the fingerprint of pigments, especially in the NIR range, is quite challenging, since the presence of vibrational transitions of the most common organic functional groups prevents to relate the optical spectrum of a composite sample, as an artwork is, to each one of its elements (i.e., support, binder, and specific pigment). In this work, a method is presented to obtain the UV-Vis-NIR optical response of the single components of a model composite sample reproducing an artwork, i.e., the support, the binder, and the pigment or dye, by using diffuse reflectance spectroscopy. This allowed us to obtain the NIR spectral fingerprint of blue pigments and to identify specific features possibly applicable for detecting cobalt and phthalocyanine blue colors in artwork analysis.


Author(s):  
Paola Ricciardi ◽  
Anna Mazzinghi ◽  
Stefano Legnaioli ◽  
Chiara Ruberto ◽  
Lisa Castelli

This paper discusses a cross-disciplinary, international collaboration aimed at researching a series of 15th century choir books at the abbey of San Giorgio Maggiore on the homonymous island in Venice. Produced for the abbey itself, the books have never left the island during their 500-years history, thereby allowing a unique opportunity to analyse historic artefacts, which have undergone little modification over time. Prompted by ongoing cataloguing work on the manuscripts, a week-long analytical campaign using a combination of non-invasive analytical methods used in portable configuration allowed the comprehensive characterisation of ten volumes. The manuscripts’ palette and painting techniques were analysed using near-infrared imaging, reflectance spectroscopy in the UV-vis-NIR range, Raman spectroscopy, X-ray fluorescence mapping and digital microscopy. The paper will discuss the challenges linked to the fragility and the large dimensions of the volumes as well as the most interesting results of the investigation. These include the detection of unusual painting materials such as bismuth ink, as well as the discovery of a less homogeneous palette than originally expected, which prompted a partial revision of the attribution of the decoration in one of the volumes to a single artist.


Heritage ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 1684-1701 ◽  
Author(s):  
Paola Ricciardi ◽  
Anna Mazzinghi ◽  
Stefano Legnaioli ◽  
Chiara Ruberto ◽  
Lisa Castelli

This paper discusses a cross-disciplinary, international collaboration aimed at researching a series of 15th century choir books at the abbey of San Giorgio Maggiore on the homonymous island in Venice. Produced for the abbey itself, the books have never left the island during their 500-year history, thereby allowing a unique opportunity to analyse historic artefacts, which have undergone little modification over time. Prompted by ongoing cataloguing work on the manuscripts, a week-long analytical campaign using a combination of non-invasive analytical methods used in portable configuration allowed the comprehensive characterisation of ten volumes. The manuscripts’ palette and painting techniques were analysed using near-infrared imaging, reflectance spectroscopy in the UV-vis-NIR range, Raman spectroscopy, X-ray fluorescence mapping and digital microscopy. The paper will discuss the challenges linked to the fragility and the large dimensions of the volumes as well as the most interesting results of the investigation. These include the detection of unusual painting materials such as bismuth ink, as well as the discovery of a less homogeneous palette than originally expected, which prompted a partial revision of the attribution of the decoration in one of the volumes to a single artist.


Sign in / Sign up

Export Citation Format

Share Document