Vibration prediction and failure analysis based on refined modeling of turbocharging rotor system with variable cross sections

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Longkai Wang ◽  
Ailun Wang ◽  
Miao Jin ◽  
Yijun Yin
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Eustaquio Martinez-Cisneros ◽  
Luis A. Velosa-Moncada ◽  
Ernesto A. Elvira-Hernandez ◽  
Omar I. Nava-Galindo ◽  
Luz Antonio Aguilera-Cortes ◽  
...  

1999 ◽  
Author(s):  
Rebecca Cragun ◽  
Larry L. Howell

Abstract Thermomechanical in-plane microactuators (TIMs) have been designed, modeled, fabricated, and tested. TIMs offer an alternative to arrays of smaller thermal actuators to obtain high output forces. The design is easily modified to obtain the desired output force or deflection for specific applications. The operational principle is based on the symmetrical thermal expansion of variable cross sections of the surface micromachined microdevice. Sixteen configurations of TIMs were fabricated of polysilicon. Finite element analysis models were used to predict the deflection and output force for the actuators. Experimental results were also recorded for all sixteen configurations, including deflections and output forces up to 20 micron and 35 dyne.


2021 ◽  
Author(s):  
Shengrong Xie ◽  
Yiyi Wu ◽  
Dongdong Chen ◽  
Ruipeng Liu ◽  
Xintao Han ◽  
...  

Abstract In deep underground mining, achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge. Owing to the coupling action of multiple factors such as deep high stress, adjacent faults, cross-layer design, weak lithology, broken surrounding rock, variable cross-sections, wide sections up to 9.9 m, and clusters of nearby chambers, there was severe deformation and breakdown in the No. 10 intersection of the roadway of large-scale variable cross-section at the − 760 m level in the Nanfeng working area of the Wuyang Coal Mine. As there are insufficient examples in engineering methods pertaining to the geological environment described above, the numerical calculation model was oversimplified and support theory underdeveloped; therefore, it is imperative to develop an effective support system for the stability and sustenance of deep roadways. In this study, a quantitative analysis of the geological environment of the roadway through field observations, borehole peeking, and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model. This model is combined with the strain softening constitutive (surrounding rock) and Mohr-Coulomb constitutive (other deep rock formations) models to construct a compression arch mechanical model for deep soft rock, based on the quadratic parabolic Mohr criterion. An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modified cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting, based on the Heok-Brown criterion. As a result of on-site practice, the following conclusions are drawn: (1) The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment, the tectonic stress is nearly 30 MPa, and the surrounding rock is severely fractured. (2) The deformation of the roadway progressively increases from small to large cross-sections, almost doubling at the largest cross-section. The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner. The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher. (3) The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme. (4) The increase in the mechanical parameters c and φ of the surrounding rock after anchoring causes a significant increase in σc and σt; the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout, and according to the test, the supporting stress field shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt (cable). On-site monitoring shows that the 60-day convergence is less than 30 mm, indicating that the stability control of the roadway is successful.


Author(s):  
Yi Jia ◽  
Reinaldo E. Madeira ◽  
Frederick Just-Agosto

This paper presents the formulation of a finite element model and vibration frequency analysis of a fluid filled pipe having variable cross sections. The finite element method with consideration of Coriolis force developed in [1] was adopted for frequency analysis of a pipe in this study. The stiffness matrix, the c-matrix (Coriolis force) and mass (for dynamic analysis) matrix that contain all parameters of the fluids properties and flow conditions have been developed. The numerical model was employed to simulate the dynamic performance of the piping system with the specific configurations for an application. A critical relationship between the natural frequencies and pipe geometry has been established. The results of frequencies analysis of the piping system gave us an insight whether a resonance frequency might occur.


2020 ◽  
Vol 166 ◽  
pp. 105229 ◽  
Author(s):  
Shurui Wen ◽  
Yuanhao Xiong ◽  
Shuaimin Hao ◽  
Fengming Li ◽  
Chuanzeng Zhang

Sign in / Sign up

Export Citation Format

Share Document