A NUMERICAL STUDY OF JOSEPHSON CURRENT IN P WAVE SUPERCONDUCTING JUNCTIONS

Author(s):  
Y. ASANO ◽  
K. SAKAMOTO ◽  
Y. TANAKA ◽  
J. INOUE
2021 ◽  
Vol 9 ◽  
Author(s):  
Jirapat Charoensawan ◽  
Ludmila Adam ◽  
Michael Ofman ◽  
Virginia Toy ◽  
Jonathan Simpson ◽  
...  

P-wave anisotropy is significant in the mylonitic Alpine Fault shear zone. Mineral- and texture-induced anisotropy are dominant in these rocks but further complicated by the presence of fractures. Electron back-scattered diffraction and synchrotron X-ray microtomography (micro-CT) data are acquired on exhumed schist, protomylonite, mylonite, and ultramylonite samples to quantify mineral phases, crystal preferred orientations, microfractures, and porosity. The samples are composed of quartz, plagioclase, mica and accessory garnet, and contain 3–5% porosity. Based on the micro-CT data, the representative pore shape has an aspect ratio of 5:2:1. Two numerical models are compared to calculate the velocity of fractured rocks: a 2D wave propagation model, and a differential effective medium model (3D). The results from both models have comparable pore-free fast and slow velocities of 6.5 and 5.5 km/s, respectively. Introducing 5% fractures with 5:2:1 aspect ratio, oriented with the longest axes parallel to foliation decreases these velocities to 6.3 and 5.0 km/s, respectively. Adding both randomly oriented and foliation-parallel fractures hinders the anisotropy increase with fracture volume. The anisotropy becomes independent of porosity when 80% of fractures are randomly oriented. Modeled anisotropy in 2D and 3D are different for similar fracture aspect ratios, being 30 and 15%, respectively. This discrepancy is the result of the underlying assumptions and limitations. Our numerical results explain the effects that fracture orientations and shapes have on previously published field- and laboratory-based studies. Through this numerical study, we show how mica-dominated, pore-free P-wave anisotropy compares to that of fracture volume, shape and orientation for protolith and shear zone rocks of the Alpine Fault.


2008 ◽  
Vol 22 (25n26) ◽  
pp. 4358-4366 ◽  
Author(s):  
KHANDKER F. QUADER ◽  
RENYUAN LIAO ◽  
FLORENTIN POPESCU

We explore p-wave pairing in a single-channel two-component Fermi system with unequal population near Feshbach resonance. Our analytical and numerical study reveal a rich superfluid (SF) ground state structure as a function of imbalance. In addition to the state Δ±1 ∝ Y1±1, a multitude of “mixed” SF states formed of linear combinations of Y1m's give global energy minimum under a phase stability condition; these states exhibit variation in energy with the relative phase between the constituent gap amplitudes. States with local energy minimum are also obtained. We provide a geometric representation of the states. A T = 0 polarization vs. p-wave coupling phase diagram is constructed across the BEC-BCS regimes. With increased polarization, the global minimum SF state may undergo a quantum phase transition to the local minimum SF state.


2007 ◽  
Vol 148 (5-6) ◽  
pp. 881-886 ◽  
Author(s):  
Y. Sawa ◽  
T. Yokoyama ◽  
Y. Tanaka ◽  
A. A. Golubov
Keyword(s):  

Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1575-1578 ◽  
Author(s):  
Lasse Amundsen ◽  
Arne Reitan

Sea‐bottom properties play an important role in fields as diverse as underwater acoustics, earthquake and geotechnical engineering, and marine geophysics. Water‐column acousticians study shear and interface waves in the nearbottom sediments with the aim of inferring sea‐bed geoacoustic parameters for predicting reflection and absorption of waves at the sea floor. On the other hand, geotechnical engineers working on design and siting of offshore structures focus on these waves to characterize soil and rock properties. In the field of geophysics, sea‐bottom parameters are of interest for several reasons. In conventional marine acquisition, these parameters determine the partitioning of the incident P‐wave energy from the source into transmitted P‐waves and mode‐converted S‐waves (Tatham and Goolsbee, 1984; Kim and Seriff, 1992). The sea‐floor P‐ and S‐wave velocities and density are also necessary inputs for decomposing multicomponent sea‐floor data into P‐ and S‐waves (Amundsen and Reitan, 1995a and b), as well as in the numerical study of wave propagation phenomena.


Sign in / Sign up

Export Citation Format

Share Document