B.2(III): COSMOLOGY (III). DARK ENERGY AND THE COSMOLOGICAL CONSTANT

Author(s):  
VARUN SAHNI
Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Author(s):  
En-Kun Li ◽  
Minghui Du ◽  
Zhi-Huan Zhou ◽  
Hongchao Zhang ◽  
Lixin Xu

Abstract Using the fσ8(z) redshift space distortion (RSD) data, the $\sigma _8^0-\Omega _m^0$ tension is studied utilizing a parameterization of growth rate f(z) = Ωm(z)γ. Here, f(z) is derived from the expansion history H(z) which is reconstructed from the observational Hubble data applying the Gaussian Process method. It is found that different priors of H0 have great influences on the evolution curve of H(z) and the constraint of $\sigma _8^0-\Omega _m^0$. When using a larger H0 prior, the low redshifts H(z) deviate significantly from that of the ΛCDM model, which indicates that a dark energy model different from the cosmological constant can help to relax the H0 tension problem. The tension between our best-fit values of $\sigma _8^0-\Omega _m^0$ and that of the Planck 2018 ΛCDM (PLA) will disappear (less than 1σ) when taking a prior for H0 obtained from PLA. Moreover, the tension exceeds 2σ level when applying the prior H0 = 73.52 ± 1.62 km/s/Mpc resulted from the Hubble Space Telescope photometry. By comparing the $S_8 -\Omega _m^0$ planes of our method with the results from KV450+DES-Y1, we find that using our method and applying the RSD data may be helpful to break the parameter degeneracies.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


2012 ◽  
Vol 21 (13) ◽  
pp. 1250088 ◽  
Author(s):  
SK. MONOWAR HOSSEIN ◽  
FAROOK RAHAMAN ◽  
JAYANTA NASKAR ◽  
MEHEDI KALAM ◽  
SAIBAL RAY

Recently, the small value of the cosmological constant and its ability to accelerate the expansion of the universe is of great interest. We discuss the possibility of forming of anisotropic compact stars from this cosmological constant as one of the competent candidates of dark energy. For this purpose, we consider the analytical solution of Krori and Barua metric. We take the radial dependence of cosmological constant and check all the regularity conditions, TOV equations, stability and surface redshift of the compact stars. It has been shown as conclusion that this model is valid for any compact star and we have cited 4U 1820-30 as a specific example of that kind of star.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Vishnu Jejjala ◽  
Michael Kavic ◽  
Djordje Minic

Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of dark energy and constrain the distribution function.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950141 ◽  
Author(s):  
G. S. Khadekar ◽  
Aina Gupta ◽  
Kalpana Pande

In this paper, we study viscous Modified Cosmic Chaplygin Gas (MCCG) in the presence of cosmological constant in flat FRW universe. We assume that bulk viscosity [Formula: see text] and cosmological constant [Formula: see text] are the linear combinations of two terms, one is constant and other is a function of dark energy density [Formula: see text]. In this framework, we solve the non-linear differential equation analytically and numerically and obtain time dependent dark energy density. We also consider two separate cases of early and late universe and discussed the evolution of dark energy density. We investigate the effect of viscosity and cosmological constant to the evolution of universe and discuss the stability of the model by square of speed of sound. Finally, we compare our model with Cardassian universe.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 917
Author(s):  
Ivan Dimitrijevic ◽  
Branko Dragovich ◽  
Alexey S. Koshelev ◽  
Zoran Rakic ◽  
Jelena Stankovic

In this paper, we investigate a nonlocal modification of general relativity (GR) with action S = 1 16 π G ∫ [ R − 2 Λ + ( R − 4 Λ ) F ( □ ) ( R − 4 Λ ) ] − g d 4 x , where F ( □ ) = ∑ n = 1 + ∞ f n □ n is an analytic function of the d’Alembertian □. We found a few exact cosmological solutions of the corresponding equations of motion. There are two solutions which are valid only if Λ ≠ 0 , k = 0 , and they have no analogs in Einstein’s gravity with cosmological constant Λ . One of these two solutions is a ( t ) = A t e Λ 4 t 2 , that mimics properties similar to an interference between the radiation and the dark energy. Another solution is a nonsingular bounce one a ( t ) = A e Λ t 2 . For these two solutions, some cosmological aspects are discussed. We also found explicit form of the nonlocal operator F ( □ ) , which satisfies obtained necessary conditions.


Sign in / Sign up

Export Citation Format

Share Document