CABLE VIBRATION CONTROL USING MAGNETO-RHEOLOGICAL (MR) DAMPERS

Author(s):  
Y.F. DUAN ◽  
Y. Q. NI ◽  
J. M. KO
Author(s):  
Hee-Dong Chae ◽  
Seung-bok Choi ◽  
Jong-Seok Oh

This paper proposes a new bed stage for patients in ambulance vehicle in order to improve ride quality in term of vibration control. The vibration of patient compartment in ambulance can cause a secondary damage to a patient and a difficulty for a doctor to perform emergency care. The bed stage is to solve vertical, rolling, and pitching vibration in patient compartment of ambulance. Four MR (magneto-rheological) dampers are equipped for vibration isolation of the stage. Firstly, a mathematical model of stage is derived followed by the measurement of vibration level of patient compartment of real ambulance vehicle. Then, the design parameters of bed stage is undertaken via computer simulation. Skyhook, PID and LQR controllers are used for vibration control and their control performances are compared.


Aerospace ◽  
2006 ◽  
Author(s):  
Liu Min ◽  
Vineet Sethi ◽  
Gangbing Song ◽  
Hui Li

This paper analyzes the locking force of a stay cable equipped with a Magneto-rheological (MR) damper. For the single mode vibration of the stay cable, the formula of the locking force is derived and the important factors that affect the locking force are analyzed. The experimental investigations of the locking force of the stay cable vibration control are carried out on a cable-stayed bridge model equipped with an MR damper to verify of the computational locking force in the Smart Materials and Structures Laboratory at University of Houston. For the multi-mode vibration of the stay cable, the modal shapes of the stay cable vibration are estimated by utilizing a pole placement observer using the acceleration values at selected locations of the stay cable and the locking forces of the stay cable in multi-mode vibration are numerically obtained. In all experimental cases, the locking forces based on the analytical and numerical formulas approximately match the experimental results.


2014 ◽  
Vol 606 ◽  
pp. 187-192 ◽  
Author(s):  
Sharmila Fathima ◽  
Asan Gani Abdul Muthalif ◽  
Md. Raisuddin Khan

Magneto-rheological (MR) fluid technology has made it possible to develop reliable, revolutionary vibration control systems for a variety of commercial, medical and military applications. MR fluid shock absorber systems are enabled by remarkably versatile MR fluid technology, which allows the system to respond instantly and controllably to varying levels of vibration or shock with simple, robust designs. This paper presents a parametric study of the MR dampers for semi-active vibration control. The influence of gap size of the damper on the viscous stress of the MR fluid is examined. It is inferred from the study that the viscous stress of the MR fluid for different parameters such as gap size influences the dynamic range of MR fluid dampers.The simulated results depict a maximum viscous stress of 1765.441 N/m2for a gap size of 1.85 mm. The developed dynamic range would allow for smaller size of the device, higher dynamic yield stress and low power consumption. The simulated results using COMSOL multiphysics for the verification of the parametric strategy have been presented. Results of this study shall enhance the design of MR dampers for different control applications.


2021 ◽  
Vol 26 (2) ◽  
pp. 04020119
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Weiming Kong ◽  
Yingmei Xu ◽  
Hui Li

2008 ◽  
Vol 56 ◽  
pp. 218-224
Author(s):  
Maguid H.M. Hassan

Smart control devices have gained a wide interest in the seismic research community in recent years. Such interest is triggered by the fact that these devices are capable of adjusting their characteristics and/or properties in order to counter act adverse effects. Magneto-Rheological (MR) dampers have emerged as one of a range of promising smart control devices, being considered for seismic applications. However, the reliability of such devices, as a component within a smart structural control scheme, still pause a viable question. In this paper, the reliability of MR dampers, employed as devices within a smart structural control system, is investigated. An integrated smart control setup is proposed for that purpose. The system comprises a smart controller, which employs a single MR damper to improve the seismic response of a single-degree-of-freedom system. The smart controller, in addition to, a model of the MR damper, is utilized in estimating the damper resistance force available to the system. On the other hand, an inverse dynamics model is utilized in evaluating the required damper resistance force necessary to maintain a predefined displacement pattern. The required and supplied forces are, then, utilized in evaluating the reliability of the MR damper. This is the first in a series of studies that aim to explore the effect of other smart control techniques such as, neural networks and neuro fuzzy controllers, on the reliability of MR dampers.


1999 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor ◽  
Jason M. Gooch

Abstract This study will examine the effectiveness of magneto-rheological (MR) dampers for controlling shock dynamics. Using a system that includes a 50-caliber rifle and a magneto-rheological damper, it is experimentally shown that MR dampers can be quite effective in controlling the compromise that commonly exists between shock forces and strokes across the shock absorber mechanism. A series of tests are conducted to demonstrate that different damping forces by the MR damper can result in different shock-force/stroke profiles. The test results further show that MR dampers can be used in a closed-loop system to adjust the shock loading characteristics in a manner that fits the dynamic system constraints and requirements.


Author(s):  
Mehdi Ahmadian ◽  
Xubin Song

Abstract A non-parametric model for magneto-rheological (MR) dampers is presented. After discussing the merits of parametric and non-parametric models for MR dampers, the test data for a MR damper is used to develop a non-parametric model. The results of the model are compared with the test data to illustrate the accuracy of the model. The comparison shows that the non-parametric model is able to accurately predict the damper force characteristics, including the damper non-linearity and electro-magnetic saturation. It is further shown that the parametric model can be numerically solved more efficiently than the parametric models.


2018 ◽  
Vol 284 ◽  
pp. 42-51 ◽  
Author(s):  
Chulhee Han ◽  
Seung-Bok Choi ◽  
Yang-Sup Lee ◽  
Hyung-Tae Kim ◽  
Cheol-Ho Kim

Sign in / Sign up

Export Citation Format

Share Document