ANALYSIS OF CONDENSED SPECIES FROM ELECTRIC ARC DEPOSITION

Author(s):  
A. M. KNAPP ◽  
F. E. FILISKO
2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Mohammad E. Matarneh ◽  
◽  
Vyacheslav Royanov ◽  
Irina Zakharova ◽  
◽  
...  

To limit the losses in sprayed metal in the process of electric arc deposition, the disintegrating airflow is pulsated. In this work, the effect of changing the pulsation frequency was studied on the process performance, mainly, the efficiency of metal removal and rate of deposition. Additionally, the bonding strength of the resulting sprayed metal was evaluated at different pulsation frequencies. The application of air pulsations increases the productivity and efficiency of sprayed material by increasing the efficiency of material used up to 30% and enhancing the rate of deposition up to 32%, at a frequency range 70–80 Hz. Moreover, at the optimum frequency of air pulsations, the bond strength increased up to 69%, measured by Steffensen’s dowel method. The results found in this work will allow for more rational usage of the electrical arc energy and material.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1485
Author(s):  
Geir Langelandsvik ◽  
Mathieu Grandcolas ◽  
Kristian G. Skorpen ◽  
Trond Furu ◽  
Odd M. Akselsen ◽  
...  

The development of customised aluminium alloys for welding and additive manufacturing (AM) is proposed to solve several quality issues and to enhance the mechanical integrity of components. The introduction of ceramic grain refining agents shows great potential as alloy addition as to limit cracking susceptibility and increase the strength. Thus, a versatile solid-state manufacturing route for nanoparticle reinforced aluminium wires has been developed based on the metal screw extrusion principle. In fact, the Al-Si alloy AA4043 mixed with 1 wt.% TiC nanoparticles has been manufactured as a wire. The accumulated strain on the material during metal screw extrusion has been estimated, classifying the process as a severe plastic deformation (SPD) method. A chemical reaction between silicon and TiC particles after metal screw extrusion was found, possibly limiting the grain refining effect. Electric arc bead-on-plate deposition was performed with metal screw extruded and commercial material. The addition of TiC induced a grain morphology transition from columnar to equiaxed after electric arc deposition, and increased the hardness. A high amount of porosity was found in the AA4043-TiC material, probably arising from hydrogen contamination on TiC surfaces prior to metal screw extrusion. The results are encouraging as a new direction for aluminium alloy development for additive manufacturing.


2020 ◽  
Vol 303 ◽  
pp. 39-46
Author(s):  
Vitaliy Ivanov ◽  
Natalia A. Makarenko ◽  
Elena Lavrova ◽  
Marina V. Ahieieva

A two-strip electrodes surfacing with controlled transfer of electrode metal is proposed for applying an anti-corrosion layer to the surface of the base metal with a variable angle to the horizon. To prevent the formation of defects in the formation of the deposited layer, it is proposed to adjust the parameters of the surfacing mode in places where the angle of inclination of the surface changes.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Sign in / Sign up

Export Citation Format

Share Document