L1-UNIQUENESS ON MEASURABLE STATE SPACES: A CLASS OF EXAMPLES

Author(s):  
MICHAEL RÖCKNER
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.


2012 ◽  
Vol 77 (10-11) ◽  
pp. 1122-1150 ◽  
Author(s):  
Werner Damm ◽  
Henning Dierks ◽  
Stefan Disch ◽  
Willem Hagemann ◽  
Florian Pigorsch ◽  
...  

1992 ◽  
Vol 96 (1) ◽  
pp. 157-174 ◽  
Author(s):  
Julian Bradfield ◽  
Colin Stirling

2014 ◽  
Vol 643 ◽  
pp. 99-104
Author(s):  
Jin Yang ◽  
Yun Jie Li ◽  
Qin Li

In this paper, the process of the developments and changes of the network intrusion behaviors were analyzed. An improved epidemic spreading model was proposed to study the mechanisms of aggressive behaviors spreading, to predict the future course of an outbreak and to evaluate strategies to control a network epidemic. Based on Artificial Immune Systems, the concepts and formal definitions of immune cells were given. And in this paper, the forecasting algorithm based on Markov chain theory was proposed to improve the precision of network risk forecasting. The data of the Memory cells were analyzed directly and kinds of state-spaces were formed, which can be used to predict the risk of network situation by analyzing the cells status and the classification of optimal state. Experimental results show that the proposed model has the features of real-time processing for network situation awareness.


2004 ◽  
Vol 11 (03) ◽  
pp. 267-275 ◽  
Author(s):  
Andrei Khrennikov

We describe methodology of cognitive experiments (based on interference of probabilities for mental observables) which could verify quantum-like structure of mental information, namely, interference of probabilities for incompatible observables. In principle, such experiments can be performed in psychology, cognitive, and social sciences. In fact, the general contextual probability theory predicts not only quantum-like trigonometric (cos θ) interference of probabilities, but also hyperbolic (cosh θ) interference of probabilities (as well as hyper-trigonometric). In principle, statistical data obtained in experiments with cognitive systems can produce hyperbolic (cosh θ) interference of probabilities. We introduce a wave function of (e.g., human) population. In general, we should not reject the possibility that cognitive functioning is neither quantum nor classical. We discuss the structure of state spaces for cognitive systems.


2009 ◽  
Vol 32 (1) ◽  
pp. 887-894 ◽  
Author(s):  
Robert Schießl ◽  
Sebastian Kaiser ◽  
Marshall Long ◽  
Ulrich Maas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document