scholarly journals QUANTUM GRAVITY EFFECTS IN ROTATING BLACK HOLES

Author(s):  
M. REUTER ◽  
E. TUIRAN
2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2007 ◽  
Vol 34 (4) ◽  
pp. 767-778 ◽  
Author(s):  
G L Alberghi ◽  
R Casadio ◽  
A Tronconi

2013 ◽  
Vol 30 (4) ◽  
pp. 045010 ◽  
Author(s):  
Alikram N Aliev ◽  
Göksel Daylan Esmer ◽  
Pamir Talazan

2017 ◽  
Vol 56 (8) ◽  
pp. 2640-2650 ◽  
Author(s):  
T. Ibungochouba Singh ◽  
I. Ablu Meitei ◽  
K. Yugindro Singh

2011 ◽  
Vol 20 (supp01) ◽  
pp. 85-93
Author(s):  
MARCUS BLEICHER ◽  
MARTIN SPRENGER

We investigate the possibility of quantum gravity effects setting in at much lower energies than the Planck scale. In particular, we study the formation and detection of microscopic black holes at the LHC as well as precision measurements of the gyroscopic moment of the muon and neutrino oscillations. We find that quantum gravity effects lead to observable signatures both in high energy and high precision scenarios. Comparison with experimental data allows us to constrain the parameters of the models.


2020 ◽  
Vol 35 (19) ◽  
pp. 2050090 ◽  
Author(s):  
Yawar H. Khan ◽  
Prince A. Ganai

Taking de Sitter space–time as a thermodynamic system, we study the effects of quantum gravity on thermodynamic quantities of de Sitter black holes in massive gravity. We enumerate the leading order corrections arising in quantum gravity regime on various thermodynamic quantities like Helmholtz free energy, Gibbs free energy, specific heat and pressure. Our results show that quantum corrections have tendency to induce stability. Moreover we observe that the parameters from the massive gravity have deeper effect on the evolution of de Sitter space–time in quantum gravity regime. Such an analysis could be helpful in understanding inflation and evolution of universe at early times.


Sign in / Sign up

Export Citation Format

Share Document