MICRO BLACK HOLES IN THE LABORATORY AND OTHER EXPERIMENTAL SIGNATURES OF QUANTUM GRAVITY

2011 ◽  
Vol 20 (supp01) ◽  
pp. 85-93
Author(s):  
MARCUS BLEICHER ◽  
MARTIN SPRENGER

We investigate the possibility of quantum gravity effects setting in at much lower energies than the Planck scale. In particular, we study the formation and detection of microscopic black holes at the LHC as well as precision measurements of the gyroscopic moment of the muon and neutrino oscillations. We find that quantum gravity effects lead to observable signatures both in high energy and high precision scenarios. Comparison with experimental data allows us to constrain the parameters of the models.

2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shovon Biswas ◽  
Mir Mehedi Faruk

Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the effects of a deformed dispersion relation along with an upper bound in the partition function that maximum energy and/or momentum scale can have on the thermodynamics of photon gas. We also analyzed two distinct quantum gravity models in this paper.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yang Bai ◽  
Joshua Berger ◽  
Mrunal Korwar ◽  
Nicholas Orlofsky

Abstract Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.


1997 ◽  
Vol 11 (19) ◽  
pp. 2303-2310 ◽  
Author(s):  
Sergio Curilef ◽  
Andrés R. R. Papa

A theoretical approach within a quantum-group formalism has recently been proposed and successfully compared to Greywall's high precision measurements of the liquid 4 He specific heat. We calculate here the specific heat for 4 He using Tsallis' non-extensive thermostatistics. A comparative analysis reveals that there is a temperature range where our theoretical results yield the best fitting to experimental data.


2007 ◽  
Vol 34 (4) ◽  
pp. 767-778 ◽  
Author(s):  
G L Alberghi ◽  
R Casadio ◽  
A Tronconi

2017 ◽  
Vol 32 (16) ◽  
pp. 1750087 ◽  
Author(s):  
Andrea Addazi

We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensemble of horizonless naked singularities (eventually smoothed at the Planck scale). We call these new items frizzy-balls, which can be rigorously defined by Euclidean path integral approach. This leads to interesting implications about information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 232
Author(s):  
Nick E. Mavromatos

In the past two decades, we have witnessed extraordinary progress in precision measurements in cosmology [...]


Sign in / Sign up

Export Citation Format

Share Document