scholarly journals Quantum gravity effects in black holes at the LHC

2007 ◽  
Vol 34 (4) ◽  
pp. 767-778 ◽  
Author(s):  
G L Alberghi ◽  
R Casadio ◽  
A Tronconi
2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2017 ◽  
Vol 56 (8) ◽  
pp. 2640-2650 ◽  
Author(s):  
T. Ibungochouba Singh ◽  
I. Ablu Meitei ◽  
K. Yugindro Singh

2011 ◽  
Vol 20 (supp01) ◽  
pp. 85-93
Author(s):  
MARCUS BLEICHER ◽  
MARTIN SPRENGER

We investigate the possibility of quantum gravity effects setting in at much lower energies than the Planck scale. In particular, we study the formation and detection of microscopic black holes at the LHC as well as precision measurements of the gyroscopic moment of the muon and neutrino oscillations. We find that quantum gravity effects lead to observable signatures both in high energy and high precision scenarios. Comparison with experimental data allows us to constrain the parameters of the models.


2020 ◽  
Vol 35 (19) ◽  
pp. 2050090 ◽  
Author(s):  
Yawar H. Khan ◽  
Prince A. Ganai

Taking de Sitter space–time as a thermodynamic system, we study the effects of quantum gravity on thermodynamic quantities of de Sitter black holes in massive gravity. We enumerate the leading order corrections arising in quantum gravity regime on various thermodynamic quantities like Helmholtz free energy, Gibbs free energy, specific heat and pressure. Our results show that quantum corrections have tendency to induce stability. Moreover we observe that the parameters from the massive gravity have deeper effect on the evolution of de Sitter space–time in quantum gravity regime. Such an analysis could be helpful in understanding inflation and evolution of universe at early times.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
H. Soltani ◽  
A. Damavandi Kamali ◽  
K. Nozari

Black hole thermodynamics is corrected in the presence of quantum gravity effects. Some phenomenological aspects of quantum gravity proposal can be addressed through generalized uncertainty principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of both a minimal measurable length and a maximal momentum on the thermodynamics of TeV-scale black holes. We then extend our study to the case that there are all natural cutoffs as minimal length, minimal momentum, and maximal momentum simultaneously. We also generalize our study to the model universes with large extra dimensions (LED). In this framework existence of black holes remnants as a possible candidate for dark matter is discussed. We study probability of black hole production in the Large Hadronic Collider (LHC) and we show this rate decreasing for sufficiently large values of the GUP parameter.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442026 ◽  
Author(s):  
Carlo Rovelli ◽  
Francesca Vidotto

Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.


Sign in / Sign up

Export Citation Format

Share Document