Free Scalar Fields

2017 ◽  
pp. 43-52
Keyword(s):  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 223
Author(s):  
Csaba Balázs

This brief note presents a back-of-the-envelope calculation showing that the number of degrees of freedom of a free scalar field in expanding flat space equals the surface area of the Hubble volume in Planck units. The logic of the calculation is the following. The amount of energy in the Hubble volume scales with its linear size, consequently the volume can only contain a finite number of quantized field modes. Since the momentum of the lowest energy mode scales inversely with the linear size of the volume, the maximal number of such modes in the volume scales with its surface area. It is possible to show that when the number of field modes is saturated the modes are confined to the surface of the volume. Gravity only enters this calculation as a regulator, providing a finite volume that contains the field, the entire calculation is done in flat space. While this toy model is bound to be incomplete, it is potentially interesting because it reproduces the defining aspects of holography, and advocates a regularization of the quantum degrees of freedom based on Friedmann’s equation.


Author(s):  
Mikko Laine ◽  
Aleksi Vuorinen
Keyword(s):  

2008 ◽  
Vol 23 (09) ◽  
pp. 653-665 ◽  
Author(s):  
MARCIN DASZKIEWICZ ◽  
JERZY LUKIERSKI ◽  
MARIUSZ WORONOWICZ

We consider κ-deformed relativistic symmetries described algebraically by modified Majid–Ruegg bi-cross-product basis and investigate the quantization of field oscillators for the κ-deformed free scalar fields on κ-Minkowski space. By modification of standard multiplication rule, we postulate the κ-deformed algebra of bosonic creation and annihilation operators. Our algebra permits one to define the n-particle states with classical addition law for the four-momentum in a way which is not in contradiction with the nonsymmetric quantum four-momentum co-product. We introduce κ-deformed Fock space generated by our κ-deformed oscillators which satisfy the standard algebraic relations with modified κ-multiplication rule. We show that such a κ-deformed bosonic Fock space is endowed with the conventional bosonic symmetry properties. Finally we discuss the role of κ-deformed algebra of oscillators in field-theoretic noncommutative framework.


Author(s):  
K. Liegener ◽  
T. Thiemann

In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian Renormalization Group in order to employ it ultimately for canonical quantum gravity. The proposal was successfully tested for free scalar fields and thus a natural next step is to test it for free gauge theories. This can be done in the framework of reduced phase space quantization which allows using techniques developed earlier for scalar field theories. In addition, in canonical quantum gravity one works in representations that support holonomy operators which are ill defined in the Fock representation of say Maxwell or Proca theory. Thus, we consider toy models that have both features, i.e. which employ Fock representations in which holonomy operators are well-defined. We adapt the coarse graining maps considered for scalar fields to those theories for free vector bosons. It turns out that the corresponding fixed pointed theories can be found analytically.


Sign in / Sign up

Export Citation Format

Share Document