Characterization of Ge Quantum Dot Optical Waveguides for High Speed Optical Modulators

Author(s):  
Jan Amir Khan ◽  
Evan Heller ◽  
Faquir Jain
2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840001
Author(s):  
Jan Amir Khan ◽  
Evan Heller ◽  
Faquir Jain

Quantum Dot (QD) Optical Modulators can provide high speed modulation in low cost indirect bandgap materials. Si based optical modulators can be realized with the inclusion of self-assembled Ge QDs to provide low cost, high speed CMOS compatible optical devices. In this paper, we present the optical characterization of a novel Ge-QD Si-SiO2 based waveguide for use in as an optical modulator. Optical performance figures of merit are investigated including insertion loss (IL) measurements, and Wavelength dependent loss (WDL). We present a multimode waveguide fabricated with conventional CMOS processing. The waveguide provides 4.43dB/cm loss and individual discrete absorption regimes corresponding to the unique minibands produced by superlattice properties of the self-assembled Ge QDs in the IR regime. Absorption properties of the Ge QDs are demonstrated and verified against the QD superlattice bandgap model. Analysis and simulation is presented to qualitatively compare the QD bandgap energies with the reported optical properties. The QD functionalized structure demonstrates the fundamental optical principles of a QD waveguide, setting the foundation for a active modulation testing of this QD based optical modulator.


Author(s):  
W. E. Lee

An optical waveguide consists of a several-micron wide channel with a slightly different index of refraction than the host substrate; light can be trapped in the channel by total internal reflection.Optical waveguides can be formed from single-crystal LiNbO3 using the proton exhange technique. In this technique, polished specimens are masked with polycrystal1ine chromium in such a way as to leave 3-13 μm wide channels. These are held in benzoic acid at 249°C for 5 minutes allowing protons to exchange for lithium ions within the channels causing an increase in the refractive index of the channel and creating the waveguide. Unfortunately, optical measurements often reveal a loss in waveguiding ability up to several weeks after exchange.


2021 ◽  
Author(s):  
Fiaz Ahmed ◽  
John Hardin Dunlap ◽  
Perry J. Pellechia ◽  
Andrew Greytak

A highly stable p-type PbS-QDs ink is prepared using a single-step biphasic ligand exchange route, overcoming instability encountered in previous reports. Chemical characterization of the ink reveals 3-mercaptopriopionic acid (MPA)...


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


2015 ◽  
Vol 24 (10) ◽  
pp. 108506
Author(s):  
Qing-Tao Chen ◽  
Yong-Qing Huang ◽  
Jia-Rui Fei ◽  
Xiao-Feng Duan ◽  
Kai Liu ◽  
...  

2020 ◽  
Author(s):  
Rishibrind Kumar Upadhyay ◽  
Abhinav Pratap Singh ◽  
Deepchandra Upadhyay ◽  
Amit Kumar ◽  
Satyabrata Jit

Sign in / Sign up

Export Citation Format

Share Document