HIGHLY ACCURATE FREE SURFACE CAPTURING TECHNIQUE FOR WAVE BREAKING

Author(s):  
Hidemi Mutsuda ◽  
Yasuaki Doi
1996 ◽  
Vol 324 ◽  
pp. 393-406 ◽  
Author(s):  
J.-M. Vanden-Broeck ◽  
F. Dias

Symmetric suction flows are computed. The flows are free-surface flows with two stagnation points. The configuration is related to the modelling of wave breaking at the bow of a ship. It is shown that there is a countably infinite number of solutions and that the free-surface profiles are characterized by waves.


Author(s):  
Zhen Ren ◽  
Jianhua Wang ◽  
Decheng Wan

The KCS model is employed for the numerical simulations to investigate the wave breaking phenomena of the bow and shoulder wave. RANS approach coupled with high resolution VOF technique is used to resolve the free surface. In order to study the speed effects on the phenomena of ship wave breaking, four different speeds, i.e. Fr = 0.26, 0.30, 0.32, 0.35, are investigated in calm water. Predicted resistance and wave patterns under Fr = 0.26 are validated with the available experiment data, and good agreement is achieved. For the Fr = 0.26 case, the wave pattern is steady, and the alternate variation of vorticity appear near the free surface is associated with the wake field. The breaking wave phenomena can be observed when the Froude number is over 0.32 and the Fr = 0.35 case shows most violent breaking bow wave. For the Fr = 0.35 case, the process of overturning and breaking of bow wave is observed clearly, and at the tail of bow wave, some breaking features of free surface are also captured. The reconnection of the initial plunger with the free surface results in a pair of counter-rotating vortex that is responsible for the second plunger and scar.


Author(s):  
Fre´de´ric Dias ◽  
Denys Dutykh ◽  
Jean-Michel Ghidaglia

The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.


Author(s):  
Fabrizio Pistani ◽  
Angelo Olivieri ◽  
Emilio Campana

When model experiments are performed the viscous and surface tension forces are not scaled accordingly. Thus not all of the features of the flow can be satisfactorily reproduced at model scale. A comparative set of experiments for measuring the model resistance, the free surface elevation and the flow velocity in the near field, have been carried out for models of different scales for evaluating the influence of the dimensions in reproducing the complete wave breaking dynamics. The resistance curves of the models show that the scale effect is present both for low and high speeds. Comparison of the averaged surface elevation reveals that the largest model possess already some of the full scale features. The comparison of the flow velocity fields highlights substantial differences among the models in the formation of the vortical structures. The influence of these vortices on the free surface is discussed and a correlation with surface scars is proposed.


Author(s):  
Jianhua Wang ◽  
Zhen Ren ◽  
Decheng Wan

The KRISO container ship model is used for numerical simulations to investigate hydrodynamic performance under high speeds. Unsteady Reynolds-Averaged Navier-Stokes (URANS) and delayed detached eddy simulation (DDES) approaches are used to resolve the flow field around the ship model. High-resolution Volume of Fluid (VOF) technique in OpenFOAM is used to capture the free surface. The present work focuses on the wave-breaking phenomena of high-speed ships. To study the speed effects on the phenomenon of ship bow wave breaking, three different speeds, i.e., Fn = .26, .35, and .40, are investigated for a fixed ship model in calm water. Predicted resistance and wave patterns under Fn = .26 are validated with available experimental data, and a good agreement is achieved. The breaking wave phenomena can be observed from both URANS and DDES results for Froude numbers greater than .35. And the Fn = .40 case shows more violent breaking bow waves. The process of overturning and breaking of bow wave is more complex in the DDES results, and some small-scale free surface features are also captured. The predicted bow wave is compared with the experiment conducted at the China Ship Scientific Research Center. It shows that the DDES results are more accurate. Wave profiles and vorticity field at several cross sections are presented to illustrate the relationship between bow waves and vortices. It is found that the free surface vorticity dissipates quickly in the URANS simulation, which leads to the difference compared with the DDES results.


2013 ◽  
Vol 10 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Md Ashim Ali ◽  
Kazuo Suzuki ◽  
Sou Miyauchi

Due to the increase of maritime transportation volume day by day it is necessary to design a ship hull having large carrying capacity with low resistance. In case of slow moving ships, usually wave breaking occurs in front of bow. A considerable portion of resistance occurs due to the energy dissipation of such wave breaking in case of Ultra Large Block coefficient Ship (ULBS) suggested by the authors. The key objective of this research work is to investigate the relationship between bow wave breaking and free surface disturbance function that may be used as a parameter for numerical prediction of bow wave breaking. In this regard, the experiments and numerical calculations have been carried out for six models of ULBS. From the results, it can be concluded that the wave breaking area in front of bow increases with the increase of surface integral of the square of free surface disturbance function, Froude number and block coefficient.DOI: http://dx.doi.org/10.3329/jname.v10i2.16104 


Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs

Wave breaking is a complex two-phase flow process that strongly influences the air-water interaction. A number of physical processes are involved in the exchange of mass, momentum and energy between air and water interaction during the wave breaking process. In shallow waters, waves undergo different transformation processes such as shoaling, refraction, diffraction and breaking due to their non-linear interaction with the seabed. Thus, the associated hydrodynamics are rather complicated to understand when compared to wave breaking in deep water (Lin, 2008). In the present numerical study, a two phase flow CFD model REEF3D (Bihs et al. 2016) is used to model and investigate the hydrodynamics of spilling and plunging breakers over a slope. An accurate modeling of the wave breaking process is still highly demanding due to the strong non-linear air-water interaction and turbulent production at the free surface. The numerical wave tank is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations together with the level set method for free surface and the k-ω model for turbulence (Alagan Chella et al. 2015). The model uses the 5th-order Weighted Essentially Non- Oscillatory (WENO) scheme for the convective discretization and the 3rd-order TVD Runge Kutta Scheme for the time discretization. A staggered grid method is employed in the model in order to achieve a stronger coupling between the pressure and velocity. The model is fully parallelized with the domain decomposition method and MPI (Message passing interface).


Sign in / Sign up

Export Citation Format

Share Document