scholarly journals GRAPH ORIENTATION ALGORITHMS TO MINIMIZE THE MAXIMUM OUTDEGREE

2007 ◽  
Vol 18 (02) ◽  
pp. 197-215 ◽  
Author(s):  
YUICHI ASAHIRO ◽  
EIJI MIYANO ◽  
HIROTAKA ONO ◽  
KOUHEI ZENMYO

This paper studies the problem of orienting all edges of a weighted graph such that the maximum weighted outdegree of vertices is minimized. This problem, which has applications in the guard arrangement for example, can be shown to be [Formula: see text]-hard generally. In this paper we first give optimal orientation algorithms which run in polynomial time for the following special cases: (i) the input is an unweighted graph, and (ii) the input graph is a tree. Then, by using those algorithms as sub-procedures, we provide a simple, combinatorial, [Formula: see text]-approximation algorithm for the general case, where wmax and wmin are the maximum and the minimum weights of edges, respectively, and ε is some small positive real number that depends on the input.

2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2014 ◽  
Vol 16 (04) ◽  
pp. 1350046 ◽  
Author(s):  
B. Barrios ◽  
M. Medina ◽  
I. Peral

The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).


2020 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
Gholamreza H. Mehrabani ◽  
Kourosh Nourouzi

AbstractDiversities are a generalization of metric spaces which associate a positive real number to every finite subset of the space. In this paper, we introduce ultradiversities which are themselves simultaneously diversities and a sort of generalization of ultrametric spaces. We also give the notion of spherical completeness for ultradiversities based on the balls defined in such spaces. In particular, with the help of nonexpansive mappings defined between ultradiversities, we show that an ultradiversity is spherically complete if and only if it is injective.


2011 ◽  
Vol 16 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Muhammad Athar ◽  
Corina Fetecau ◽  
Muhammad Kamran ◽  
Ahmad Sohail ◽  
Muhammad Imran

The velocity field and the adequate shear stress corresponding to the flow of a fractional Maxwell fluid (FMF) between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is produced by the inner cylinder that at time t = 0+ applies a shear stress fta (a ≥ 0) to the fluid. The solutions that have been obtained, presented under series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as special cases of general solutions. The unsteady solutions corresponding to a = 1, 2, 3, ... can be written as simple or multiple integrals of similar solutions for a = 0 and we extend this for any positive real number a expressing in fractional integration. Furthermore, for a = 0, 1 and 2, the solutions corresponding to Maxwell fluid compared graphically with the solutions obtained in [1–3], earlier by a different technique. For a = 0 and 1 the unsteady motion of a Maxwell fluid, as well as that of a Newtonian fluid ultimately becomes steady and the required time to reach the steady-state is graphically established. Finally a comparison between the motions of FMF and Maxwell fluid is underlined by graphical illustrations.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Vichian Laohakosol ◽  
Suton Tadee

A theorem of Dubickas, affirming a conjecture of Kuba, states that a nonzero algebraic number is a root of a polynomial f with positive rational coefficients if and only if none of its conjugates is a positive real number. A certain quantitative version of this result, yielding a growth factor for the coefficients of f similar to the condition of the classical Eneström-Kakeya theorem of such polynomial, is derived. The bound for the growth factor so obtained is shown to be sharp for some particular classes of algebraic numbers.


1989 ◽  
Vol 26 (01) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γ n (p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 &lt; p &lt; 1. Denote by ρ n (s) the number of vertices in the union of all those components of Γ n (p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n (s) and the limit distribution of ρ n (s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


1994 ◽  
Vol 87 (3) ◽  
pp. 161-170
Author(s):  
James R. Rahn ◽  
Barry A. Berndes

Power functions and exponential functions often describe the relationship between variables in physical phenomena. Power functions are equations of the form y = kxn (see fig. 1), where k is a nonzero real number and n is a nonzero real number not equal to 1. Exponential functions are equations of the form y = kbx (see fig. 2), where k is a nonzero real number and b is a positive real number. Students should be able visually to recognize these functions so that they can easily identify their appearance when experimental data are graphed. When physical phenomena appear to describe exponential and power functions, logarithms can be used to locate approximate functions that represent the phenomena.


1964 ◽  
Vol 4 (1) ◽  
pp. 122-128
Author(s):  
P. D. Finch

A discrete renewal process is a sequence {X4} of independently and inentically distributed random variables which can take on only those values which are positive integral multiples of a positive real number δ. For notational convenience we take δ = 1 and write where .


Sign in / Sign up

Export Citation Format

Share Document