scholarly journals THE MASTER WARD IDENTITY

2002 ◽  
Vol 14 (09) ◽  
pp. 977-1049 ◽  
Author(s):  
M. DÜTSCH ◽  
F.-M. BOAS

In the framework of perturbative quantum field theory (QFT) we propose a new, universal (re)normalization condition (called 'master Ward identity') which expresses the symmetries of the underlying classical theory. It implies for example the field equations, energy-momentum, charge- and ghost-number conservation, renormalized equal-time commutation relations and BRST-symmetry. It seems that the master Ward identity can nearly always be satisfied, the only exceptions we know are the usual anomalies. We prove the compatibility of the master Ward identity with the other (re)normalization conditions of causal perturbation theory, and for pure massive theories we show that the 'central solution' of Epstein and Glaser fulfills the master Ward identity, if the UV-scaling behavior of its individual terms is not relatively lowered. Application of the master Ward identity to the BRST-current of non-Abelian gauge theories generates an identity (called 'master BRST-identity') which contains the information which is needed for a local construction of the algebra of observables, i.e. the elimination of the unphysical fields and the construction of physical states in the presence of an adiabatically switched off interaction.

2004 ◽  
Vol 16 (10) ◽  
pp. 1291-1348 ◽  
Author(s):  
MICHAEL DÜTSCH ◽  
KLAUS FREDENHAGEN

In the framework of perturbative algebraic quantum field theory a local construction of interacting fields in terms of retarded products is performed, based on earlier work of Steinmann [42]. In our formalism the entries of the retarded products are local functionals of the off-shell classical fields, and we prove that the interacting fields depend only on the action and not on terms in the Lagrangian which are total derivatives, thus providing a proof of Stora's "Action Ward Identity" [45]. The theory depends on free parameters which flow under the renormalization group. This flow can be derived in our local framework independently of the infrared behavior, as was first established by Hollands and Wald [32]. We explicitly compute non-trivial examples for the renormalization of the interaction and the field.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


1987 ◽  
pp. 462-465
Author(s):  
Izrail Moiseevich Gelfand

Author(s):  
Jean Zinn-Justin

Chapter 14 contains a general discussion of the quantization and renormalization of non–Abelian gauge theories. The quantization necessitates gauge fixing and introduces the Faddeev–Popov determinant. Slavnov–Taylor identities for vertex (one–particle–irreducible (1PI)) functions, the basis of a first proof of renormalizability, follow. The Faddeev–Popov determinant leads to a non–local action. A local form is generated by introducing Faddeev–Popov ghost fields. The new local action has an important new symmetry, the BRST symmetry. However, the explicit realization of the symmetry is not stable under renormalization. By contrast, a quadratic equation that is satisfied by the action and generating functional of 1PI functions, the Zinn–Justin equation, is stable and at the basis of a general proof of the renormalizability of non–Abelian gauge theories. The proof involves some simple elements of BRST cohomology. The renormalized form of BRST symmetry then makes it possible to prove gauge independence and unitarity.


Author(s):  
Jean Zinn-Justin

Chapter 11 is the first of four chapters that discuss various issues connected with the Standard Model of fundamental interactions at the microscopic scale. It discusses the important notion of gauge invariance, first Abelian and then non–Abelian, the basic geometric structure that generates interactions. It relates it to the concept of parallel transport. Due to gauge invariance, not all components of the gauge field are dynamical and gauge fixing is required (with the problem of Gribov copies in non–Abelian theories). The quantization of non–Abelian gauge theories is briefly discussed, with the introduction of Faddeev–Popov ghost fields and the appearance of BRST symmetry.


Author(s):  
S. A. Fulling ◽  
A. G. S. Landulfo ◽  
G. E. A. Matsas

Classical field theory is about fields and how they behave in space–time. Quantum field theory, in practice, usually seems to be about particles and how they scatter. Nevertheless, classical fields must emerge from quantum field theory in appropriate limits, and Michael Duff showed how this happens for the Schwarzschild solution in perturbative quantum gravity. In a series of papers, we and others have shown how classical radiation from an accelerated charge emerges from quantum field theory when the Unruh thermal effect is taken into account. Here, we sharpen those conclusions by showing that, even at finite times, the quantum picture is meaningful and is in close agreement with the classical picture.


Sign in / Sign up

Export Citation Format

Share Document