Wavelet-Based Biphase Analysis of Brain Rhythms in Automated Wake–Sleep Classification

Author(s):  
Ehsan Mohammadi ◽  
Bahador Makkiabadi ◽  
Mohammad Bagher Shamsollahi ◽  
Parham Reisi ◽  
Saeed Kermani

Many studies in the field of sleep have focused on connectivity and coherence. Still, the nonstationary nature of electroencephalography (EEG) makes many of the previous methods unsuitable for automatic sleep detection. Time-frequency representations and high-order spectra are applied to nonstationary signal analysis and nonlinearity investigation, respectively. Therefore, combining wavelet and bispectrum, wavelet-based bi-phase (Wbiph) was proposed and used as a novel feature for sleep–wake classification. The results of the statistical analysis with emphasis on the importance of the gamma rhythm in sleep detection show that the Wbiph is more potent than coherence in the wake–sleep classification. The Wbiph has not been used in sleep studies before. However, the results and inherent advantages, such as the use of wavelet and bispectrum in its definition, suggest it as an excellent alternative to coherence. In the next part of this paper, a convolutional neural network (CNN) classifier was applied for the sleep–wake classification by Wbiph. The classification accuracy was 97.17% in nonLOSO and 95.48% in LOSO cross-validation, which is the best among previous studies on sleep–wake classification.

Author(s):  
Paul Honeine ◽  
Cédric Richard ◽  
Patrick Flandrin

This chapter introduces machine learning for nonstationary signal analysis and classification. It argues that machine learning based on the theory of reproducing kernels can be extended to nonstationary signal analysis and classification. The authors show that some specific reproducing kernels allow pattern recognition algorithm to operate in the time-frequency domain. Furthermore, the authors study the selection of the reproducing kernel for a nonstationary signal classification problem. For this purpose, the kernel-target alignment as a selection criterion is investigated, yielding the optimal time-frequency representation for a given classification problem. These links offer new perspectives in the field of nonstationary signal analysis, which can benefit from recent developments of statistical learning theory and pattern recognition.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1178
Author(s):  
Amnah Nasim ◽  
Agnese Sbrollini ◽  
Micaela Morettini ◽  
Laura Burattini

Beat classification and denoising are two challenging and fundamental operations when processing digital electrocardiograms (ECG). This paper proposes the extended segmented beat modulation method (ESBMM) as a tool for automatic beat classification and ECG denoising. ESBMM includes four main steps: (1) beat identification and segmentation into PQRS and TU segments; (2) wavelet-based time-frequency feature extraction; (3) convolutional neural network-based classification to discriminate among normal (N), supraventricular (S), and ventricular (V) beats; and (4) a template-based denoising procedure. ESBMM was tested using the MIT–BIH arrhythmia database available at Physionet. Overall, the classification accuracy was 91.5% while the positive predictive values were 92.8%, 95.6%, and 83.6%, for N, S, and V classes, respectively. The signal-to-noise ratio improvement after filtering was between 0.15 dB and 2.66 dB, with a median value equal to 0.99 dB, which is significantly higher than 0 (p < 0.05). Thus, ESBMM proved to be a reliable tool to classify cardiac beats into N, S, and V classes and to denoise ECG tracings.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Vladimir A. Maksimenko ◽  
Semen A. Kurkin ◽  
Elena N. Pitsik ◽  
Vyacheslav Yu. Musatov ◽  
Anastasia E. Runnova ◽  
...  

We apply artificial neural network (ANN) for recognition and classification of electroencephalographic (EEG) patterns associated with motor imagery in untrained subjects. Classification accuracy is optimized by reducing complexity of input experimental data. From multichannel EEG recorded by the set of 31 electrodes arranged according to extended international 10-10 system, we select an appropriate type of ANN which reaches 80 ± 10% accuracy for single trial classification. Then, we reduce the number of the EEG channels and obtain an appropriate recognition quality (up to 73 ± 15%) using only 8 electrodes located in frontal lobe. Finally, we analyze the time-frequency structure of EEG signals and find that motor-related features associated with left and right leg motor imagery are more pronounced in the mu (8–13 Hz) and delta (1–5 Hz) brainwaves than in the high-frequency beta brainwave (15–30 Hz). Based on the obtained results, we propose further ANN optimization by preprocessing the EEG signals with a low-pass filter with different cutoffs. We demonstrate that the filtration of high-frequency spectral components significantly enhances the classification performance (up to 90 ± 5% accuracy using 8 electrodes only). The obtained results are of particular interest for the development of brain-computer interfaces for untrained subjects.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650025 ◽  
Author(s):  
Karan Veer ◽  
Tanu Sharma ◽  
Ravinder Agarwal

The objective of the work is to investigate the classification of different movements based on the surface electromyogram (SEMG) pattern recognition method. The testing was conducted for four arm movements using several experiments with artificial neural network classification scheme. Six time domain features were extracted and consequently classification was implemented using back propagation neural classifier (BPNC). Further, the realization of projected network was verified using cross validation (CV) process; hence ANOVA algorithm was carried out. Performance of the network is analyzed by considering mean square error (MSE) value. A comparison was performed between the extracted features and back propagation network results reported in the literature. The concurrent result indicates the significance of proposed network with classification accuracy (CA) of 100% recorded from two channels, while analysis of variance technique helps in investigating the effectiveness of classified signal for recognition tasks.


Author(s):  
Too Jing Wei ◽  
Abdul Rahim Bin Abdullah ◽  
Norhashimah Binti Mohd Saad ◽  
Nursabillilah Binti Mohd Ali ◽  
Tengku Nor Shuhada Binti Tengku Zawawi

In this paper, the performance of featureless EMG pattern recognition in classifying hand and wrist movements are presented. The time-frequency distribution (TFD), spectrogram is employed to transform the raw EMG signals into time-frequency representation (TFR). The TFRs or spectrogram images are then directly fed into convolutional neural network (CNN) for classification. Two CNN models are proposed to learn the features automatically from the images without the need of manual feature extraction. The performance of CNN with different number of convolutional layers is examined. The proposed CNN models are evaluated using the EMG data from 10 intact and 11 amputee subjects through the publicly access NinaPro database. Our results show that CNN classifier offered the best mean classification accuracy of 88.04% in recognizing hand and wrist movements.


2018 ◽  
Vol 21 (62) ◽  
pp. 134
Author(s):  
Rey Benjamin M. Baquirin ◽  
Proceso L. Fernandez

Artificial Neural Networks (ANNs) have continued to be efficient models in solving classification problems. In this paper, we explore the use of an A NN with a small dataset to accurately classify whet her Filipino call center agents’ pronunciations are neutral or not based on their employer’s standards. Isolated utterances of the ten most commonly used words in the call center were recorded from eleven agents creating a dataset of 110 utterances. Two learning specialists were consulted to establish ground truths and Cohen’s Kappa was computed as 0.82, validating the reliability of the dataset. The first thirteen Mel-Frequency Cepstral Coefficients (MFCCs) were then extracted from each word and an ANN was trained with Ten-fold Stratified Cross Validation. Experimental results on the model recorded a classification accuracy of 89.60% supported by an overall F-Score of 0.92.


Sign in / Sign up

Export Citation Format

Share Document