PIXE STUDY ON ABSORPTION OF ARSENATE AND ARSENITE BY ARSENIC HYPERACCUMULATING FERN (PTERIS VITTATA)

2008 ◽  
Vol 18 (03n04) ◽  
pp. 241-252 ◽  
Author(s):  
H. YAMAZAKI ◽  
K. ISHII ◽  
S. MATSUYAMA ◽  
Y. KIKUCHI ◽  
Y. TAKAHASHI ◽  
...  

Pytoremediation using an arsenic hyperaccumulator, Petris vittata L., has generated an increasing interest worldwide due to both environmentally sound and cost effectiveness. However the mechanism of arsenic accumulation by this fern is not clear at this time. This study examined the uptake of arsenate (As(V)) and arsenite (As(III)) by a hydroponic culture of Pteris vittata using both in-air submilli-PIXE for different parts of the fern and in-air micro-PIXE for the tissue cells. These PIXE analysis systems used 3 MeV proton beams from a 4.5-MV single-ended Dynamitron accelerator at Tohoku University, Japan. The fern took up both arsenate and arsenite from hydroponic solutions which were spiked with 50 mg of arsenic per litter. Final amount of arsenic accumulation in the fern is 1,500 mg per kg (wet weight) of the plant biomass in arsenite treatment and 1,100 mg per kg in arsenate treatment. Arsenic accumulation was not observed at the root parts of the ferns. The in-vivo mapping of elements by submilli-PIXE analyses on the fern laminas showed the arsenic accumulation in the edges of a pinna. The micro-PIXE analyses revealed arsenic maps homogeneously distributed in cells of the lamina, stem and rhizome of the fern. These results indicate that arsenic, both arsenate and arsenite in a contaminated medium are translocated quickly from roots to fronds of Pteris vittata, and distributes homogeneously into tissue cells of the fern laminas.

2010 ◽  
Vol 20 (03n04) ◽  
pp. 119-125
Author(s):  
H. YAMAZAKI ◽  
K. ISHII ◽  
S. MATSUYAMA ◽  
A. TERAKAWA ◽  
Y. KIKUCHI ◽  
...  

Pteris vittata is a fern reported to be an arsenic hyper-accumulator. To develop the practical application of the fern to a phytoremediation technique, it is necessary to explicate the effective accumulation mechanism. In this study, the arsenic distribution and the elemental correlation in the cellular level were examined in the fronds supplied with arsenate and arsenite separately via xylem vessel using an in-air micro-PIXE system at Tohoku University. The difference in transportation rate between arsenate and arsenite as well as the translocation of elements necessary for plant metabolism was revealed in different tissues of the fronds accumulating arsenic in high concentration. Hence, the in-air micro-PIXE analysis is an effective measure for undertaking phytoremediation research of hyper-accumulator plants.


2013 ◽  
Vol 85 ◽  
pp. 1-6 ◽  
Author(s):  
Mei Lei ◽  
Xiao-ming Wan ◽  
Xue-wen Li ◽  
Tong-bin Chen ◽  
Ying-ru Liu ◽  
...  

2010 ◽  
Vol 158 (5) ◽  
pp. 1530-1535 ◽  
Author(s):  
Shuhe Wei ◽  
Lena Q. Ma ◽  
Uttam Saha ◽  
Shiny Mathews ◽  
Sabarinath Sundaram ◽  
...  

2017 ◽  
Vol 27 (01n02) ◽  
pp. 37-42
Author(s):  
T. Segawa ◽  
S. Harada ◽  
S. Ehara ◽  
K. Ishii ◽  
T. Sato ◽  
...  

Encapsulated protamine-hyaluronic acid particles containing carboplatin were prepared and their ability to release carboplatin was tested in vivo. Protamine–hyaluronic acid particles containing carboplatin were prepared by mixing protamine (1.6 mg) and hyaluronic acid (1.28 mg) into a 5 mg/mL carboplatin solution for 30 min at room temperature. A 1 mL solution of protamine–hyaluronic acid particles was poured into an ampule of COATSOME[Formula: see text] EL-010 (Nichiyu, Tokyo, Japan), shaken three times by hand, and allowed to incubate at room temperature for 15 min. Following that, 10 or 20 Gy of 100 kiloelectronvolt (KeV) soft X-ray was applied. The release of carboplatin was imaged using a microparticle-induced X-ray emission (PIXE) camera. The amount of carboplatin released was expressed as the amount of platinum released and measured via quantitative micro-PIXE analysis. The diameter of the generated encapsulated particles measured [Formula: see text] nm (mean ± standard error). The release of carboplatin from the encapsulated protamine–hyaluronic acid particles was observed under a micro-PIXE camera. The amount of carboplatin released was [Formula: see text] under 10 Gy of radiation, and [Formula: see text] under 20 Gy of radiation, which was a sufficient dose for cancer treatment. However, 10 or 20 Gy of radiation is much greater than the dose used for clinical cancer treatment (2 Gy). Further research to reduce the radiation dose to 2 Gy in order to release sufficient carboplatin for cancer treatment is required.


1981 ◽  
Vol 45 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Ann-Sofie Sandberg ◽  
H. Andersson ◽  
B. Hallgren ◽  
Kristina Hasselblad ◽  
B. Isaksson ◽  
...  

1. An experimental model for the determination of dietary fibre according to the definition of Trowell et al. (1976) is described. Food was subjected to in vivo digestion in ileostomy patients, and the ileostomy contents were collected quantitatively, the polysaccharide components of which were analysed by gas–liquid chromatography and the Klason lignin by gravimetric determination. The model was used for the determination of dietary fibre in AACC (American Association of Cereal Chemists), wheat bran and for studies on the extent of hydrolysis of wheat-bran fibre in the stomach and small intestine. The effect of wheat bran on ileostomy losses of nitrogen, starch and electrolytes was also investigated.2. Nine patients with established ileostomies were studied during two periods while on a constant low-fibre diet. In the second period 16 g AACC wheat bran/d was added to the diet. The ileostomy contents and duplicate portions of the diet were subjected to determinations of wet weight, dry weight, water content, fibre components, starch, N, sodium and potassium.3. The wet weight of ileostomy contents increased by 94 g/24 h and dry weight by 10 g/24 h after consumption of bran. The dietary fibre of AACC bran, determined as the increase in polysaccharides and lignin of ileostomy contents after consumption of bran, was 280 g/kg fresh weight (310 g/kg dry matter). Direct analysis of polysaccharides and lignin in bran gave a value of 306 g/kg fresh weight. Of the added bran hemicellulose and cellulose 80–100% and 75–100% respectively were recovered in ileostomy contents. There was no significant difference between the two periods in amount of N, starch and K found in the ileostomy contents. The Na excretion increased during the ‘bran’ period and correlated well with the wet weight of ileostomy contents.4. In conclusion, it seems probable that determination of dietary fibre by in vivo digestion in ileostomy patients comes very close to the theoretical definition of dietary fibre, as the influence of bacteria in the ileum seems small. Bacterial growth should be avoided by using a technique involving the change of ileostomy bags every 2 h and immediate deep-freezing of the ileostomy contents. True dietary fibre can be determined by direct analysis of polysaccharides and lignin in the food, at least in bran. Very little digestion of hemicellulose and cellulose from bran occurs in the stomach and small bowel. The 10–20% loss in some patients may be due to digestion by the gastric juice or to bacterial fermentation in the ileum, or both. The extra amount of faecal N after consumption of bran, reported by others, is probably produced in the large bowel.


Sign in / Sign up

Export Citation Format

Share Document