NANO CHARACTERIZATION OF MATERIALS

2008 ◽  
Vol 18 (04) ◽  
pp. 861-878 ◽  
Author(s):  
DIETER K. SCHRODER

Material characterization is challenged by continuously decreasing device dimensions placing significant demands on characterization instruments and measurement interpretation. Numerous techniques exist and a few are highlighted here. Some of these have existed for a long time, while others have only emerged from the laboratory recently. Generally they are more user-friendly and have reasonable turn-around times. The trend in many techniques is clearly toward characterization of smaller dimensions. Among the myriad of characterization techniques in use today, I will discuss recent advances in transmission electron microscopy (TEM), electron holography, magnetic exchange force microscopy (MExFM), atom probe ion field ion microscopy, and X-ray tomography. They have made significant advances in the last few years and in some cases have produced very impressive results. For example, TEM is now able to generate images with 0.05 nm resolution, allowing display of individual atoms. MExFM in conjunction with magnetic fields has demonstrated vertical resolution of 0.0015 nm. Helium ion microscopy is also highlighted because it contributes a new application of ion beams, which had been largely the domain of Rutherford backscattering. Progress in developing further advances in nm dimensional characterization will, no doubt, continue to satisfy the demand for such measurements in the future.

Author(s):  
L. L. Horton ◽  
M. K. Miller ◽  
S. Spooner

Transmission Electron Microscopy (TEM), Atom Probe Field-Ion Microscopy (APFIM) and Small Angle Neutron Scattering (SANS) have been used to characterize the microstructure of a commercial Fe-30.1 at.% Cr-9.9 at.% Co alloy. One goal of this investigation was to demonstrate the complementary nature of these techniques in solving a difficult materials problem, the characterization of fine scale spinodally-decomposed structures. The alloy was solution treated at 925°C for 140 min followed by water quenching, isothermal aging at 525°C for times of 2, 8, 24, 72, 192, or 485 h and a final water quench. TEM characterizations were performed with Philips EM400T/FEG, Philips EM430T and JEM 120C instruments.


2000 ◽  
Vol 6 (S2) ◽  
pp. 228-229
Author(s):  
M. A. Schofield ◽  
Y. Zhu

Quantitative off-axis electron holography in a transmission electron microscope (TEM) requires careful design of experiment specific to instrumental characteristics. For example, the spatial resolution desired for a particular holography experiment imposes requirements on the spacing of the interference fringes to be recorded. This fringe spacing depends upon the geometric configuration of the TEM/electron biprism system, which is experimentally fixed, but also upon the voltage applied to the biprism wire of the holography unit, which is experimentally adjustable. Hence, knowledge of the holographic interference fringe spacing as a function of applied voltage to the electron biprism is essential to the design of a specific holography experiment. Furthermore, additional instrumental parameters, such as the coherence and virtual size of the electron source, for example, affect the quality of recorded holograms through their effect on the contrast of the holographic fringes.


1996 ◽  
Vol 440 ◽  
Author(s):  
H. C. Wang ◽  
D. W. Cheong ◽  
J. Kumar ◽  
C. Sung ◽  
S. K. Tripathy

AbstractA soluble, asymmetrically substituted polydiacetylene, poly(BPOD), has been reported to form stable monolayers at the air-water interface by the Langmuir-Blodgett (LB) technique [2]. Preformed polydiacetylene has been deposited onto hydrophobic substrates as multilayers to form second order nonlinear optical thin films. Second harmonic generation was found to increase with the number of layers. From previous atomic force microscopy (AFM) studies backbone orientation along the dipping direction with an interchain spacing of about 5 A° was indicated [2].The film morphology and preferential molecular orientation of these LB films are further investigated by transmission electron microscopy (TEM). A specifically tailored sample preparation method for the ultrathin LB films was used. Multilayer films were deposited on hydrophobic collodion covered glass substrates for this purpose. Electron diffraction was employed to study the crystalline organization of mono and multilayers of LB films as well as cast films.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Emilia Tomaszewska ◽  
Katarzyna Soliwoda ◽  
Kinga Kadziola ◽  
Beata Tkacz-Szczesna ◽  
Grzegorz Celichowski ◽  
...  

Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs) colloids were studied using dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 749 ◽  
Author(s):  
Jun Wu ◽  
Roumen Petrov ◽  
Sebastian Kölling ◽  
Paul Koenraad ◽  
Loic Malet ◽  
...  

Micro- to nano-scale characterization of the microstructures in the white etching layer (WEL), observed in a Dutch R260 Mn grade rail steel, was performed via various techniques. Retained austenite in the WEL was identified via electron backscatter diffraction (EBSD), automatic crystallographic orientation mapping in transmission electron microscopy (ACOM-TEM), and X-ray diffraction (XRD). EBSD and ACOM-TEM methods were used to quantify grains (size range: 50 nm–4 μm) in the WEL. Transmission electron microscopy (TEM) was used to identify complex heterogeneous microstructural morphologies in the WEL: Nano-twinning substructure with high dislocation density in the WEL close to the rail surface and untransformed cementite and dislocations in the WEL close to the pearlite matrix. Furthermore, atom probe tomography (APT) revealed a heterogeneous through-thickness distribution of alloying elements in the WEL. Accordingly, the WEL is considered a multi-layered martensitic microstructure. These findings are supported by the temperature calculations from the shape analysis of the manganese profile from APT measurements, related to manganese diffusion. The deformation characteristics of the WEL and the pearlite beneath the WEL are discussed based on the EBSD measurements. The role of deformation in the martensitic phase transformation for WEL formation is discussed.


Sign in / Sign up

Export Citation Format

Share Document