scholarly journals Generalized punctual Hilbert schemes and 𝔤-complex structures

Author(s):  
Alexander Thomas

We define and analyze various generalizations of the punctual Hilbert scheme of the plane, associated to complex or real Lie algebras. Out of these, we construct new geometric structures on surfaces whose moduli spaces share multiple properties with Hitchin components, and which are conjecturally homeomorphic to them. For simple complex Lie algebras, this generalizes the higher complex structure. For real Lie algebras, this should give an alternative description of the Hitchin–Kostant–Rallis section.

Author(s):  
Vladimir Fock ◽  
Alexander Thomas

Abstract We introduce and analyze a new geometric structure on topological surfaces generalizing the complex structure. To define this so-called higher complex structure, we use the punctual Hilbert scheme of the plane. The moduli space of higher complex structures is defined and is shown to be a generalization of the classical Teichmüller space. We give arguments for the conjectural isomorphism between the moduli space of higher complex structures and Hitchin’s component.


2014 ◽  
Vol 13 (08) ◽  
pp. 1450056 ◽  
Author(s):  
Joachim Jelisiejew

We consider the question of irreducibility of the Hilbert scheme of points ℋilbdℙn and its Gorenstein locus. This locus is known to be reducible for d ≥ 14. For d ≤ 11 the irreducibility of this locus was proved in the series of papers [G. Casnati and R. Notari, On the Gorenstein locus of some punctual Hilbert schemes, J. Pure Appl. Algebra 213(11) (2009) 2055–2074; On the irreducibility and the singularities of Gorenstein locus of the Punctual Hilbert scheme of degree 10, J. Pure Appl. Algebra 215(6) (2011) 1243–1254; Irreducibility of the Gorenstein locus of the Punctual Hilbert Scheme of degree 11, preprint (2012)] and Iarrobino conjectured that the irreducibility holds for d ≤ 13. In this paper, we prove that the subschemes corresponding to the Gorenstein algebras having Hilbert function (1, 5, 5, 1) are smoothable, i.e. lie in the closure of the locus of smooth subschemes. This result completes the proof of irreducibility of the Gorenstein locus of ℋilb12ℙn, see Theorem 2.


2018 ◽  
Vol 5 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Adela Latorre ◽  
Luis Ugarte ◽  
Raquel Villacampa

Abstract We find a one-parameter family of non-isomorphic nilpotent Lie algebras ga, with a > [0,∞), of real dimension eight with (strongly non-nilpotent) complex structures. By restricting a to take rational values, we arrive at the existence of infinitely many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, balanced Hermitian metrics and generalized Gauduchon metrics on such nilmanifolds are constructed.


Author(s):  
Roger Bielawski

Abstract Dedicated to the memory of Sir Michael Francis Atiyah (1929-2019) We give a characterization of Atiyah’s and Hitchin’s transverse Hilbert schemes of points on a symplectic surface in terms of bi-Poisson structures. Furthermore, we describe the geometry of hyperkähler manifolds arising from the transverse Hilbert scheme construction, with particular attention paid to the monopole moduli spaces.


Author(s):  
Ni Ketut Mirahayuni ◽  
Susie Chrismalia Garnida ◽  
Mateus Rudi Supsiadji

Abstract. Translating complex structures have always been a challenge for a translator since the structures can be densed with ideas and particular logical relations. The purpose of translation is reproducing texts into another language to make them available to wider readerships. Since language is not merely classification of a set of universal and general concept, that each language articulates or organizes the world differently, the concepts in one language can be radically different from another. One issue in translation is the difference among languages, that the wider gaps between the source and target languages may bring greater problems of transfer of message from the source into the target languages (Culler, 1976). Problematic factors involved in translation include meaning, style, proverbs, idioms and others. A number of translation procedures and strategies have been discussed to solve translation problems. This article presents analysis of complex structures in scientific Indonesian, the problems and effects on translation into English. The study involves data taken from two research article papers in Indonesian to be translated into English. The results of the analysis show seven (7) problems of Indonesian complex structures, whose effect on translation process can be grouped into two: complex structures related to grammar (including: complex structure with incomplete information, run-on sentences, redundancy , sentence elements with inequal semantic relation, and logical relation and choice of conjunctor) and complex structures related to information processing in discourse (including: front-weight- structure and thematic structure with changes of Theme element). Problems related to grammar may be solved with language economy and accuracy while those related to discourse may be solved with understanding information packaging patterns in the target language discourse. Keywords: scientific language, complex structures, translation


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


2021 ◽  
Vol 11 (12) ◽  
pp. 5570
Author(s):  
Binbin Wang ◽  
Jingze Liu ◽  
Zhifu Cao ◽  
Dahai Zhang ◽  
Dong Jiang

Based on the fixed interface component mode synthesis, a multiple and multi-level substructure method for the modeling of complex structures is proposed in this paper. Firstly, the residual structure is selected according to the structural characteristics of the assembled complex structure. Secondly, according to the assembly relationship, the parts assembled with the residual structure are divided into a group of substructures, which are named the first-level substructure, the parts assembled with the first-level substructure are divided into a second-level substructure, and consequently the multi-level substructure model is established. Next, the substructures are dynamically condensed and assembled on the boundary of the residual structure. Finally, the substructure system matrix, which is replicated from the matrix of repeated physical geometry, is obtained by preserving the main modes and the constrained modes and the system matrix of the last level of the substructure is assembled to the upper level of the substructure, one level up, until it is assembled in the residual structure. In this paper, an assembly structure with three panels and a gear box is adopted to verify the method by simulation and a rotor is used to experimentally verify the method. The results show that the proposed multiple and multi-level substructure modeling method is not unique to the selection of residual structures, and different classification methods do not affect the calculation accuracy. The selection of 50% external nodes can further improve the analysis efficiency while ensuring the calculation accuracy.


2017 ◽  
Vol 4 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Niccolò Lora Lamia Donin

Abstract In this paper we consider a special class of completely integrable systems that arise as transverse Hilbert schemes of d points of a complex symplectic surface S projecting onto ℂ via a surjective map p which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme Sp[d] with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces and such that its characteristic polynomial is the square of its minimum polynomial and show it has the maximal number of commuting Hamiltonians.We then provide the inverse construction, starting from a 2ddimensional holomorphic integrable system W which has an endomorphism A: TW → TW satisfying the above properties and recover our initial surface S with W ≌ Sp[d].


2020 ◽  
pp. 1-25
Author(s):  
CHIARA CAMERE ◽  
ALBERTO CATTANEO ◽  
ANDREA CATTANEO

We study irreducible holomorphic symplectic manifolds deformation equivalent to Hilbert schemes of points on a $K3$ surface and admitting a non-symplectic involution. We classify the possible discriminant quadratic forms of the invariant and coinvariant lattice for the action of the involution on cohomology and explicitly describe the lattices in the cases where the invariant lattice has small rank. We also give a modular description of all $d$ -dimensional families of manifolds of $K3^{[n]}$ -type with a non-symplectic involution for $d\geqslant 19$ and $n\leqslant 5$ and provide examples arising as moduli spaces of twisted sheaves on a $K3$ surface.


Sign in / Sign up

Export Citation Format

Share Document