Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs

2018 ◽  
Vol 29 (01) ◽  
pp. 1850002 ◽  
Author(s):  
J. M. Franco ◽  
L. Rández

The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.

2008 ◽  
Vol 19 (06) ◽  
pp. 957-970 ◽  
Author(s):  
I. Th. FAMELIS

Using a new methodology for deriving hybrid Numerov-type schemes, we present new explicit methods for the solution of second order initial value problems with oscillating solutions. The new methods attain algebraic order eight at a cost of eight function evaluations per step which is the most economical in computational cost that can be found in the literature. The methods have high amplification and phase-lag order characteristics in order to suit to the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


2006 ◽  
Vol 17 (06) ◽  
pp. 861-876 ◽  
Author(s):  
Ch. TSITOURAS

We present a new explicit hybrid two step method for the solution of second order initial value problem. It costs only nine function evaluations per step and attains eighth algebraic order so it is the cheapest in the literature. Its coefficients are chosen to reduce amplification and phase errors. Thus the method is well suited for facing problems with oscillatory solutions. After implementing a MATLAB program, we proceed with numerical tests that justify our effort.


2000 ◽  
Vol 11 (02) ◽  
pp. 415-437 ◽  
Author(s):  
G. AVDELAS ◽  
A. KONGUETSOF ◽  
T. E. SIMOS

In this paper a family of hybrid methods with minimal phase-lag are developed for the numerical solution of periodic initial-value problems. The methods are of eighth algebraic order and have large intervals of periodicity. The efficiency of the new methods is presented by their application to the wave equation and to coupled differential equations of the Schrödinger type.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
N. A. Ahmad ◽  
N. Senu ◽  
F. Ismail

A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods.


2009 ◽  
Vol 20 (03) ◽  
pp. 383-398 ◽  
Author(s):  
I. TH. FAMELIS

We present a new explicit Numerov-type method for the solution of second-order linear initial value problems with oscillating solutions. The new method attains algebraic order seven at a cost of six function evaluations per step. The method has the characteristic of zero dissipation and high phase-lag order making it suitable for the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
N. Senu ◽  
F. Ismail ◽  
S. Z. Ahmad ◽  
M. Suleiman

Two-step optimized hybrid methods of order five and order six are developed for the integration of second order oscillatory initial value problems. The optimized hybrid method (OHMs) are based on the existing nonzero dissipative hybrid methods. Phase-lag, dissipation or amplification error, and the differentiation of the phase-lag relations are required to obtain the methods. Phase-fitted methods based on the same nonzero dissipative hybrid methods are also constructed. Numerical results show that OHMs are more accurate compared to the phase-fitted methods and some well-known methods appeared in the scientific literature in solving oscillating second order initial value problems. It is also found that the nonzero dissipative hybrid methods are more suitable to be optimized than phase-fitted methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Zhaoxia Chen ◽  
Xiong You ◽  
Xin Shu ◽  
Mei Zhang

In order to solve initial value problems of differential equations with oscillatory solutions, this paper improves traditional Runge-Kutta (RK) methods by introducing frequency-depending weights in the update. New practical RK integrators are obtained with the phase-fitting and amplification-fitting conditions and algebraic order conditions. Two of the new methods have updates that are also phase-fitted and amplification-fitted. The linear stability and phase properties of the new methods are examined. The results of numerical experiments on physical and biological problems show the robustness and competence of the new methods compared to some highly efficient integrators in the literature.


SIMULATION ◽  
2021 ◽  
pp. 003754972098082
Author(s):  
Ali Shokri ◽  
Mohammad Mehdizadeh Khalsaraei ◽  
Hamid Mohammad-Sedighi ◽  
Ali Atashyar

In this paper, a new family of two-step semi-hybrid schemes of the 12th algebraic order is proposed for the numerical simulation of initial-value problems of second-order ordinary differential equations. The proposed methods are symmetric and belong to the family of multiderivative methods. Each method of the new family appears to be hybrid, but after implementing the hybrid terms, it will continue as a multiderivative method. Therefore, the designation semi-hybrid is used. The consistency, convergence, stability, and periodicity of the methods are investigated and analyzed. In order to show the accuracy, consistency, convergence, and stability of the proposed family, it was tested on some well-known problems, such as the undamped Duffing’s equation. The simulation results demonstrate the efficiency and advantages of the proposed method compared to the currently available methods.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Emmanuel A Areo ◽  
Nosimot O Adeyanju ◽  
Sunday J Kayode

This research proposes the derivation of a class of hybrid methods for solution of second order initial value problems (IVPs) in block mode. Continuous linear multistep method of two cases with step number k = 4 is developed by interpolating the basis function at certain grid points and collocating the differential system at both grid and off-grid points. The basic properties of the method including order, error constant, zero stability, consistency and convergence were investigated. In order to examine the accuracy of the methods, some differential problems of order two were solved and results generated show a better performance when comparison is made with some current methods.Keywords- Block Method, Hybrid Points, Initial Value Problems, Power Series, Second Order 


Sign in / Sign up

Export Citation Format

Share Document