Impact of information feedback strategy on the car accidents in two-route scenario

2018 ◽  
Vol 29 (09) ◽  
pp. 1850081 ◽  
Author(s):  
R. Marzoug ◽  
N. Lakouari ◽  
O. Oubram ◽  
H. Ez-Zahraouy ◽  
L. Cisneros-Villalobos ◽  
...  

Various feedback strategies are proposed to improve the traffic flow. However, most of these works did not take road safety into consideration. In this paper, we studied the impact of four feedback strategies on the probability of rear-end collisions ([Formula: see text]). We proposed a new feedback strategy named Accidents Coefficient Feedback Strategy (ACFS) in which dynamic information can be generated and displayed on a board at the entrance of two-route scenario with intersection to help drivers to choose the appropriate road. This new strategy can greatly improve road safety and make the flow smooth as possible at the same time. Moreover, the impact of the intersection and boundary rates ([Formula: see text] and [Formula: see text]) on [Formula: see text] is also studied.

2021 ◽  
Vol 8 ◽  
pp. 68-71
Author(s):  
Svetlana A. Zhbanova ◽  

The paper examines the features of the use of automatic control of offenses in the field of road traffic, taking into account the territorial and climatic features of the Khabarovsk region, their impact on road safety. The author analyzes the main problems, as well as offers solutions for better and more objective recording of traffic flow and accident prevention. The novelty of the research consists in a comprehensive analysis of the theoretical and legal aspects of the fundamental ideas of road safety.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550007 ◽  
Author(s):  
R. Marzoug ◽  
H. Ez-Zahraouy ◽  
A. Benyoussef

Using cellular automata (CA) Nagel–Schreckenberg (NaSch) model, we numerically study the probability P ac of the occurrence of car accidents at nonsignalized intersection when drivers do not respect the priority rules. We also investigated the impact of mixture lengths and velocities of vehicles on this probability. It is found that in the first case, where vehicles distinguished only by their lengths, the car accidents start to occur above a critical density ρc. Furthermore, the increase of the fraction of long vehicles (FL) delays the occurrence of car accidents (increasing ρc) and increases the risk of collisions when ρ > ρc. In other side, the mixture of maximum velocities (with same length for all vehicles) leads to the appearance of accidents at the intersection even in the free flow regime. Moreover, the increase of the fraction of fast vehicles (Ff) reduces the accident probability (P ac ). The influence of roads length is also studied. We found that the decrease of the roads length enhance the risk of collision.


Author(s):  
Jianqiang Wang ◽  
Shiwei Li

Considering both the high complexity of urban traffic flow systems and the bounded rationality of travelers, providing traffic information to all travelers is an effective method to induce each individual to make a more rational route-choice decision. Within Advanced Traveler Information System (ATIS) working environment, temporal and spatial evolution processes of traffic flow in urban road networks are closely related to strategies of providing traffic information and contents of information. In view of the day-to-day route-choice situations, this study constructs original updating models of the cognitive travel time of travelers under four conditions, including not providing any route travel time, only providing the most rapid route travel time, only providing the most congested route travel time, and providing all the routes travel times. The disaggregate route-choice approach is adopted for simulation to reveal the relationship between the evolution process of network traffic flow and the strategy of providing traffic information. The simulation shows that providing traffic information to all travelers cannot improve the operational efficiency of road networks. It is noteworthy that an inappropriate information feedback strategy would lead to intense variation in various routes traffic flow. Compared with incomplete information feedback strategies, it is inefficient and superfluous to provide complete traffic information to all travelers.


2010 ◽  
Vol 21 (08) ◽  
pp. 1081-1093 ◽  
Author(s):  
CHUANFEI DONG ◽  
XU MA ◽  
BINGHONG WANG

We first study dynamics of traffic flow with real-time information and the influence of a new feedback strategy named Vehicle Number Feedback Strategy (VNFS) in a multi-route scenario in which dynamic information can be generated and displayed on the board (the board refers to a variable message sign where information on the routes is displayed) to guide road users to make a choice. In a multi-route scenario, our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting vehicle number feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e. Travel Time Feedback Strategy (TTFS), Mean Velocity Feedback Strategy (MVFS) and Congestion Coefficient Feedback Strategy (CCFS). We also discuss the influence of expected arrival rate (Vp) at the entrance on the average flux of each route, and we find that the flux adopting VNFS is always the largest at each Vp value among these four feedback strategies.


Author(s):  
Paolo Perego ◽  
Federica Biassoni ◽  
Ana Luisa Silva ◽  
Sam Clark ◽  
Jesse Randrianarisoa

Author(s):  
Almudena Sanjurjo-de-No ◽  
Blanca Arenas-Ramírez ◽  
José Mira ◽  
Francisco Aparicio-Izquierdo

An accurate estimation of exposure is essential for road collision rate estimation, which is key when evaluating the impact of road safety measures. The quasi-induced exposure method was developed to estimate relative exposure for different driver groups based on its main hypothesis: the not-at-fault drivers involved in two-vehicle collisions are taken as a random sample of driver populations. Liability assignment is thus crucial in this method to identify not-at-fault drivers, but often no liability labels are given in collision records, so unsupervised analysis tools are required. To date, most researchers consider only driver and speed offences in liability assignment, but an open question is if more information could be added. To this end, in this paper, the visual clustering technique of self-organizing maps (SOM) has been applied to better understand the multivariate structure in the data, to find out the most important variables for driver liability, analyzing their influence, and to identify relevant liability patterns. The results show that alcohol/drug use could be influential on liability and further analysis is required for disability and sudden illness. More information has been used, given that a larger proportion of the data was considered. SOM thus appears as a promising tool for liability assessment.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


Sign in / Sign up

Export Citation Format

Share Document