Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method

Author(s):  
Aimon Rahman ◽  
Preetom Nag ◽  
Md. Mamun Molla ◽  
Sheikh Hassan

The magnetic field effect on natural convection flow of power-law (PL) non-Newtonian fluid has been studied numerically using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). A two-dimensional rectangular enclosure with differentially heated at two vertical sides has been considered for the computational domain. Numerical simulations have been conducted for different pertinent parameters such as Hartmann number, [Formula: see text], Rayleigh number, [Formula: see text], PL indices, [Formula: see text]–1.4, Prandtl number, [Formula: see text], to study the flow physics and heat transfer phenomena inside the rectangular enclosure of aspect-ratio [Formula: see text]. Numerical results show that the heat transfer rate, quantified by the average Nusselt number, is attenuated with increasing the magnetic field, i.e. the Hartmann number (Ha). However, the average Nusselt number is increased by increasing the Rayleigh number, [Formula: see text] and decreasing the PL index, [Formula: see text]. Besides, the generation of entropy for non-Newtonian fluid flow under the magnetic field effect has been investigated in this study. Results show that in the absence of a magnetic field, [Formula: see text], fluid friction and heat transfer irreversibilities, the total entropy generation decreases and increases with increasing [Formula: see text] and [Formula: see text], respectively. In the presence of the magnetic field, [Formula: see text], the fluid friction irreversibility tends to decrease with increasing both the shear-thinning and shear thickening effect. It is noteworthy that strengthening the magnetic field leads to pulling down the total entropy generation and its corresponding components. All simulations have been performed on the Graphical Processing Unit (GPU) using NVIDIA CUDA and employing the High-Performance Computing (HPC) facility.

2017 ◽  
Vol 28 (11) ◽  
pp. 1750138 ◽  
Author(s):  
Xuguang Yang ◽  
Lei Wang

In this paper, the magnetic field effects on natural convection of power-law non-Newtonian fluids in rectangular enclosures are numerically studied by the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). To maintain the locality of the LBM, a local computing scheme for shear rate is used. Thus, all simulations can be easily performed on the Graphics Processing Unit (GPU) using NVIDIA’s CUDA, and high computational efficiency can be achieved. The numerical simulations presented here span a wide range of thermal Rayleigh number ([Formula: see text]), Hartmann number ([Formula: see text]), power-law index ([Formula: see text]) and aspect ratio ([Formula: see text]) to identify the different flow patterns and temperature distributions. The results show that the heat transfer rate is increased with the increase of thermal Rayleigh number, while it is decreased with the increase of Hartmann number, and the average Nusselt number is found to decrease with an increase in the power-law index. Moreover, the effects of aspect ratio have also investigated in detail.


2021 ◽  
Author(s):  
Mashnoon Islam ◽  
Salma Abdul Hai ◽  
Preetom Nag ◽  
Md Mamun Molla

Abstract This numerical study demonstrates heat transfer and irreversibility or entropy generation of non-Newtonian power-law Al2O3-H2O (aluminum oxide-water) nanofluids in a square enclosure using multiple-relaxation-time lattice Boltzmann method accelerated by graphics processing unit computing. In this investigation, the effective thermal conductivity and viscosity are variables, and they depend on the fluid temperature and rate of strain, respectively. The enclosure’s left and right walls are uniformly heated with different temperatures, and the upper and lower walls are thermally adiabatic. There is no valid study and results on non-Newtonian fluid using multiple-relaxation-time lattice Boltzmann method for this configuration and hence the novelty of the present results have been ensured. This paper has formulated and appropriately validated the Newtonian and non-Newtonian natural convection problem with the available numerical results. This study includes a set of comprehensive simulations, showing the effects of these fluids’ natural convection by varying three key parameters: the Rayleigh number, the volume fraction of nanoparticles, and the power-law index on the streamlines, isotherms, local and average Nusselt number as well as the local and total entropy generation. The results show that increasing the volume fraction of the nanoparticles from 0% to 2%, the average rate of heat transfer and the total entropy generation increase 6.5% and 7.4%, respectively, while the Rayleigh number, Ra = 105 and the power-law index n = 0.6.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


Entropy ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 1034-1054 ◽  
Author(s):  
Mounir Bouabid ◽  
Nejib Hidouri ◽  
Mourad Magherbi ◽  
Ammar Ben Brahim

2019 ◽  
Vol 29 (12) ◽  
pp. 4746-4763 ◽  
Author(s):  
Qingang Xiong ◽  
Arash Khosravi ◽  
Narjes Nabipour ◽  
Mohammad Hossein Doranehgard ◽  
Aida Sabaghmoghadam ◽  
...  

Purpose This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus. Design/methodology/approach The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters. Findings The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented. Originality/value The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.


Author(s):  
HamidReza KhakRah ◽  
Payam Hooshmand ◽  
David Ross ◽  
Meysam Jamshidian

Purpose The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity. Design/methodology/approach The finite-difference discretization method enables the numerical simulations to be run when there are non-uniform and curvilinear grids with a finer near-wall grid resolution. Furthermore, the high-order method is applied in the numerical approach, which makes it possible to go with relatively coarse mesh in respect to simulations, which used classical lattice Boltzmann method. The configuration of the cavity is set to sine-walled square. In addition, the cavity is filled with Al2O3-water nanofluid, and the Koo–Kleinstreuer–Li model is used to estimate the properties of nanofluid. Findings The nanoparticle (Al2O3) concentration in the base fluid (water) is considered in a range of 0-0.04. The nanofluid flow and heat transfer are investigated in laminar regime with Rayleigh number in the range of 103-106. The second law analysis is used to study the effects of different governing parameters on the local and volumetric entropy generation. The Rayleigh number, configuration of the cavity and nanoparticle concentration are considered as the governing parameters. The results are mainly focused on the flow structure, temperature field, local and volumetric entropy generation and heat transfer performance. Originality/value The originality of this study is using of a modern numerical method supported by an accurate prediction for nanofluid properties to simulate the flow and heat transfer during natural convection in a cavity.


Sign in / Sign up

Export Citation Format

Share Document