scholarly journals COVARIANT TWO-POINT FUNCTION FOR MINIMALLY COUPLED SCALAR FIELD IN de SITTER SPACE–TIME

2001 ◽  
Vol 16 (26) ◽  
pp. 1691-1697 ◽  
Author(s):  
MOHAMMAD VAHID TAKOOK

In a recent paper,1 it has been shown that negative norm states are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers an automatic and covariant renormalization of the vacuum energy divergence. This paper is a completion of our previous work. An explicit construction of the covariant two-point function of the "massless" minimally coupled scalar field in de Sitter space is given, which is free of any infrared divergence. The associated Schwinger commutator function and retarded Green's function are calculated in a fully gauge-invariant way, which also means coordinate independent.

2002 ◽  
Vol 11 (06) ◽  
pp. 509-518 ◽  
Author(s):  
MOHAMMAD VAHID TAKOOK

In recent papers,1,2 it has been shown that the presence of negative norm states or negative frequency solutions are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers the advantage of eliminating any ultraviolet divergence in the vacuum energy2 and infrared divergence in the two point function.3 We attempt here to extend this method to the interacting quantum field in Minkowski space-time. As an illustration of the procedure, we consider the λϕ4 theory in Minkowski space-time. The mathematical consequences of this method is the disappearance of the ultraviolet divergence to the one-loop approximation. This means, the effect of these auxiliary negative norm states is to allow an automatic renormalization of the theory in this approximation.


2007 ◽  
Vol 22 (30) ◽  
pp. 2287-2295 ◽  
Author(s):  
G. A. KERIMOV

Starting with a scalar field theory in Euclidean anti-de Sitter space constructed in an earlier paper, we examine the boundary limit of the quantized bulk field. Our AdS/CFT correspondence is generally valid for interacting fields, and is illustrated by a treatment of three-point function for scalar fields of arbitrary mass.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


2021 ◽  
Vol 36 (02) ◽  
pp. 2150011
Author(s):  
Nabil Mehdaoui ◽  
Lamine Khodja ◽  
Salah Haouat

In this work, we address the process of pair creation of scalar particles in [Formula: see text] de Sitter space–time in presence of a constant electromagnetic field by applying the noncommutativity on the scalar field up to first-order in [Formula: see text]. We calculate the density of particles created in the vacuum by the mean of the Bogoliubov transformations. In contrast to a previous result, we show that noncommutativity contributes to the pair creation process. We find that the noncommutativity plays the same role of chemical potential and gives an important interest for studies at high energies.


2019 ◽  
Vol 16 (04) ◽  
pp. 743-791
Author(s):  
Grigalius Taujanskas

We prove small data energy estimates of all orders of differentiability between past null infinity and future null infinity of de Sitter space for the conformally invariant Maxwell-scalar field system. Using these, we construct bounded and invertible, but nonlinear, scattering operators taking past asymptotic data to future asymptotic data. We deduce exponential decay rates for solutions with data having at least two derivatives, and for more regular solutions discover an asymptotic decoupling of the scalar field from the charge. The construction involves a carefully chosen complete gauge fixing condition which allows us to control all components of the Maxwell potential, and a nonlinear Grönwall inequality for higher-order estimates.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641016 ◽  
Author(s):  
Rafael P. Bernar ◽  
Luís C. B. Crispino ◽  
Atsushi Higuchi

In [R. P. Bernar, L. C. B. Crispino and A. Higuchi, Phys. Rev. D 90 (2014) 024045.] we investigated gravitational perturbations in the background of de Sitter spacetime in arbitrary dimensions. More specifically, we used a gauge-invariant formalism to describe the perturbations inside the cosmological horizon, i.e. in the static patch of de Sitter spacetime. After a gauge-fixed quantization procedure, the two-point function in the Bunch–Davies-like vacuum state was shown to be infrared finite and invariant under time-translation. In this work, we give details of the calculations to obtain the graviton two-point function in 3 + 1 dimensions.


2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340020 ◽  
Author(s):  
MACIEJ MALIBORSKI ◽  
ANDRZEJ ROSTWOROWSKI

In these lecture notes, we discuss recently conjectured instability of anti-de Sitter space, resulting in gravitational collapse of a large class of arbitrarily small initial perturbations. We uncover the technical details used in the numerical study of spherically symmetric Einstein-massless scalar field system with negative cosmological constant that led to the conjectured instability.


Sign in / Sign up

Export Citation Format

Share Document