scholarly journals HAMILTONIAN ANALYSIS OF n-DIMENSIONAL PALATINI GRAVITY WITH MATTER

2005 ◽  
Vol 20 (10) ◽  
pp. 725-731 ◽  
Author(s):  
MUXIN HAN ◽  
YONGGE MA ◽  
YOU DING ◽  
LI QIN

We consider the Palatini formalism of gravity with cosmological constant Λ coupled to a scalar field ϕ in n dimensions. The n-dimensional Einstein equations with Λ can be derived by the variation of the coupled Palatini action provided n>2. The Hamiltonian analysis of the coupled action is carried out by a 1+(n-1) decomposition of the spacetime. It turns out that both Palatini action and Hilbert action lead to the same geometric dynamics in the presence of Λ and ϕ while the n-dimensional Palatini action could not give a dynamical formalism of connection directly.

1992 ◽  
Vol 07 (27) ◽  
pp. 2463-2467 ◽  
Author(s):  
SUBENOY CHAKRABORTY

Wormhole solutions are discussed for two different physical situations in the background of a homogeneous anisotropic space-time. In the first case, the wormholes are solutions of the Euclidean Einstein equations with a cosmological constant and a two-index anti-symmetric tensor for monopole configuration on a space with three-surface of topology S1×S2. In the second step, conformal scalar field is coupled to gravity and wormhole are considered for both λ=0 and λ>0. These results are analogous to the wormhole solutions for FRW metric.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
John D. Barrow ◽  
Spiros Cotsakis

AbstractWe generalise Einstein’s formulation of the traceless Einstein equations to f(R) gravity theories. In the case of the vacuum traceless Einstein equations, we show that a non-constant Weyl tensor leads via a conformal transformation to a dimensionally homogeneous (‘no-scale’) theory in the conformal frame with a scalar field source that has an exponential potential. We then formulate the traceless version of f(R) gravity, and we find that a conformal transformation leads to a no-scale theory conformally equivalent to general relativity and a scalar field $$\phi $$ ϕ with a potential given by the scale-invariant form: $$V(\phi )=\frac{D-2}{4D}Re^{-\phi }$$ V ( ϕ ) = D - 2 4 D R e - ϕ , where $$\phi =[2/(D-2)]\ln f^{\prime }(R)$$ ϕ = [ 2 / ( D - 2 ) ] ln f ′ ( R ) . In this theory, the cosmological constant is a mere integration constant, statistically distributed in a multiverse of independent causal domains, the vacuum energy is another unrelated arbitrary constant, and the same is true of the height of the inflationary plateau present in a huge variety of potentials. Unlike in the conformal equivalent of full general relativity, flat potentials are found to be possible in all spacetime dimensions for polynomial lagrangians of all orders. Hence, we are led to a novel interpretation of the cosmological constant vacuum energy problem and have accelerated inflationary expansion in the very early universe with a very small cosmological constant at late times for a wide range of no-scale theories. Fine-tunings required in traceless general relativity or standard non-traceless f(R) theories of gravity are avoided. We show that the predictions of the scale-invariant conformal potential are completely consistent with microwave background observational data concerning the primordial tilt and the tensor-to-scalar ratio.


1999 ◽  
Vol 183 ◽  
pp. 310-310
Author(s):  
Yasunori Fujii

A solution of the cosomlogical constant problem seems to come from a version of the scalar-tensor theory of gravity, which is characterized by a “nonminimal coupling“ in place of the standard Einstein-Hilbert action, where ɸ is the scalar field while ξ a constant. One then encounters an inherent question never fully answered: How can one single out a right conformai frame?


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 221
Author(s):  
A. N. Ivanov ◽  
M. Wellenzohn

In the Einstein–Cartan gravitational theory with the chameleon field, while changing its mass independently of the density of its environment, we analyze the Friedmann–Einstein equations for the Universe’s evolution with the expansion parameter a being dependent on time only. We analyze the problem of an identification of the chameleon field with quintessence, i.e., a canonical scalar field responsible for dark energy dynamics, and for the acceleration of the Universe’s expansion. We show that since the cosmological constant related to the relic dark energy density is induced by torsion (Astrophys. J.2016, 829, 47), the chameleon field may, in principle, possess some properties of quintessence, such as an influence on the dark energy dynamics and the acceleration of the Universe’s expansion, even in the late-time acceleration, but it cannot be identified with quintessence to the full extent in the classical Einstein–Cartan gravitational theory.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850159 ◽  
Author(s):  
Shad Ali ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

Christodoulou and Rovelli have shown that the interior volume of a Schwarzschild black hole grows linearly with time. The entropy of a scalar field in this interior volume of a Schwarzschild black hole has been calculated and shown to increase linearly with the advanced time too. In this paper, considering Hawking radiation from a d-dimensional charged black hole, we investigate the proportional relation between the entropy of the scalar field in the interior volume and the Bekenstein–Hawking entropy using the method of our previous work. We also derive this proportionality relation using Hamiltonian analysis and find a consistent result. We then investigate the proportionality coefficient with respect to d and find that it gradually decreases as the dimension of space–time increases.


2019 ◽  
Vol 28 (01) ◽  
pp. 1950022 ◽  
Author(s):  
Yousef Bisabr

We consider a generalized Brans–Dicke model in which the scalar field has a self-interacting potential function. The scalar field is also allowed to couple nonminimally with the matter part. We assume that it has a chameleon behavior in the sense that it acquires a density-dependent effective mass. We consider two different types of matter systems which couple with the chameleon, dust and vacuum. In the first case, we find a set of exact solutions when the potential has an exponential form. In the second case, we find a power-law exact solution for the scale factor. In this case, we will show that the vacuum density decays during expansion due to coupling with the chameleon.


1989 ◽  
Vol 04 (06) ◽  
pp. 513-518 ◽  
Author(s):  
YASUNORI FUJII

The mechanism of a decaying cosmological constant in terms of a scalar field has been criticized for its ensuing diminishment of the gravitational constant with time. Contrary to a naive view, however, the physical results can be made fully nontrivial, as demonstrated explicitly by a simple model in which the scalar field generates particle masses that increase with time, but in such a way that the gravitational constant stays constant asymptotically when time is measured by an atomic clock. The scalar field might also be an origin of the fifth force.


Sign in / Sign up

Export Citation Format

Share Document