scholarly journals DARK MATTER TO DARK ENERGY TRANSITION IN k-ESSENCE COSMOLOGIES

2005 ◽  
Vol 20 (27) ◽  
pp. 2075-2082 ◽  
Author(s):  
L. P. CHIMENTO ◽  
MÓNICA FORTE ◽  
RUTH LAZKOZ

We implement the transition from dark matter to dark energy in k-essence cosmologies for a very large set of kinetic functions F, in a way alternative to recent proposals which use generalized Chaplygin gas and transient models. Here we require that the pressure admits a power-law expansion around some value of the kinetic energy where the pressure vanishes. In addition, for suitable values of the parameters of the model, the speed of sound of the dark matter will be low. We first present the discussion in fairly general terms, and later consider for illustration two examples.

2007 ◽  
Vol 04 (02) ◽  
pp. 313-323 ◽  
Author(s):  
MAREK SZYDLOWSKI ◽  
ALEKSANDRA KUREK

We characterize a class of simple FRW models filled by both dark energy and dark matter in notion of a single potential function of the scale factor a(t); t is the cosmological time. It represents the potential of a fictitious particle — Universe moving in 1-dimensional well V(a) which the positional variable mimics the evolution of the Universe. Then the class of all dark energy models (called a multiverse) can be regarded as a Banach space naturally equipped in the structure of the Sobolev metric. In this paper, we explore the notion of C1 metric introduced in the multiverse which measures distance between any two dark energy models. If we choose cold dark matter as a reference, then we can find how far apart are different models offering explanation of the present accelerating expansion phase of the Universe. We consider both models with dark energy (models with the generalized Chaplygin gas, models with variable coefficient equation of state [Formula: see text] parameterized by redshift z, models with phantom matter) as well as models based on some modification of Friedmann equation (Cardassian models, Dvali–Gabadadze–Porrati brane models). We argue that because observational data still favor the ΛCDM model, all reasonable dark energy models should belong to the nearby neighborhood of this model.


2009 ◽  
Vol 18 (11) ◽  
pp. 1741-1748 ◽  
Author(s):  
JIANBO LU ◽  
LIXIN XU

A new diagnostic method, Om, is applied to the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. On the basis of the recently observed data — the Union supernovae, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter — we show the discriminations between the GCG model and the ΛCDM model. Furthermore, it is calculated that the current equation of state of dark energy w 0de = -0.964, according to the GCG model.


2007 ◽  
Vol 16 (10) ◽  
pp. 1601-1609 ◽  
Author(s):  
YABO WU ◽  
SONG LI ◽  
HAI YANG ZHONG ◽  
LEI LI

A two-fluid generalized Chaplygin gas (GCG) model including two different cases is considered in this paper. Concretely, the evolution of the GCG model with interaction is discussed and the statefinder diagnostic for the GCG models is performed, respectively. By analysis, we show that the effective state parameter of dark energy can cross the so-called phantom divide ω = -1, the behavior of GCG will be like ΛCDM in the future and therefore our Universe will not end up with the Big Rip in the future. In addition, we find that the statefinder diagnostic can differentiate the GCG model with or without interaction. Also, trajectories of both the GCG model mixed with cold dark matter (CDM) and the pure GCG model in the parameter plane are illustrated to be significantly different.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 362
Author(s):  
Abdulla Al Mamon ◽  
Vipin Chandra Dubey ◽  
Kazuharu Bamba

We explore a unified model of dark matter and dark energy. This new model is a generalization of the generalized Chaplygin gas model and is known as a new generalized Chaplygin gas (NGCG) model. We study the evolutions of the Hubble parameter and the distance modulus for the model under consideration and the standard ΛCDM model and compare that with the observational datasets. Furthermore, we demonstrate two geometric diagnostics analyses including the statefinder (r,s) and Om(z) to the discriminant NGCG model from the standard ΛCDM model. The trajectories of evolution for (r,s) and Om(z) diagnostic planes are shown to understand the geometrical behavior of the NGCG model by using different observational data points.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950171
Author(s):  
Abdulla Al Mamon ◽  
Pritikana Bhandari ◽  
Subenoy Chakraborty

In this work, we have made an attempt to investigate the dark energy possibility from the thermodynamical point of view. For this purpose, we have studied thermodynamic stability of three popular dark energy models in the framework of an expanding, homogeneous, isotropic and spatially flat FRW Universe filled with dark energy and cold dark matter. The models considered in this work are Chevallier–Polarski–Linder (CPL) model, Generalized Chaplygin Gas (GCG) model and Modified Chaplygin Gas (MCG) model. By considering the cosmic components (dark energy and cold dark matter) as perfect fluid, we have examined the constraints imposed on the total equation of state parameter ([Formula: see text]) of the dark fluid by thermodynamics and found that the phantom nature ([Formula: see text]) is not thermodynamically stable. Our investigation indicates that the dark fluid models (CPL, GCG and MCG) are thermodynamically stable under some restrictions of the parameters of each model.


2006 ◽  
Vol 21 (15) ◽  
pp. 1233-1239 ◽  
Author(s):  
YABO WU ◽  
XUEMEI DENG ◽  
JIANBO LU ◽  
SONG LI ◽  
XIUYI YANG

We consider the generalized Chaplygin gas (GCG) proposal for the unification of dark matter and dark energy with p = pdeand ρ = ρdm+ρde. The unified equation of state for GCG has been obtained: [Formula: see text]. On the basis of the function χ(z), some cosmological quantities such as the fractional contributions of different components of the universe Ωi(i respectively denotes baryons, dark matter and dark energy) to the critical density, the equation of state for dark energy ωde, the deceleration parameter q are all obtained, which are consistent with observations. In addition, the transition from deceleration to acceleration is described in our model. We find that the behavior of GCG will be like ΛCDM in the future. So, it has been ruled out in our model that our universe will end up with Big Rip in the future.


Sign in / Sign up

Export Citation Format

Share Document