scholarly journals STANDARD MODEL WITH COSMOLOGICALLY BROKEN QUANTUM SCALE INVARIANCE

2010 ◽  
Vol 25 (03) ◽  
pp. 167-177 ◽  
Author(s):  
PANKAJ JAIN ◽  
SUBHADIP MITRA

We consider a locally scale invariant extension of the Standard Model of particle physics and argue that it fits both the particle and cosmological observations. The model is scale invariant both classically and quantum mechanically. The scale invariance is broken (or hidden) by a mechanism which we refer to as cosmological symmetry breaking. This produces all the dimensionful parameters in the theory. The cosmological constant or dark energy is a prediction of the theory and can be calculated systematically order by order in perturbation theory. It is expected to be finite at all orders. The model does not suffer from the hierarchy problem due to the absence of scalar particles, including the Higgs, from the physical spectrum.

Author(s):  
Steven E. Vigdor

Chapter 8 deals with the apparent perching of the physical vacuum state in the universe on the edge between stability and meta-stability, at least within the standard model, in light of the mass of the recently discovered Higgs boson. Standard model calculations mapping vacuum stability as a function of Higgs boson and top quark masses are presented. The dramatic unveiling of the Higgs boson signal by the enormous detectors at the Large Hadron Collider is reviewed. Possible interpretations and implications of meta-stability, including unlikely doomsday scenarios, are discussed. The hierarchy problem is presented as a theoretical conundrum arising from the vast gap between the Higgs boson mass and the Planck mass scale at which an as-yet undeveloped theory of quantum gravity becomes essential. Various speculative theoretical approaches, including supersymmetry, to physics beyond the standard model that might address the hierarchy problem and other outstanding particle physics mysteries are mentioned.


2021 ◽  
pp. 1-4
Author(s):  
Housam H Safadi ◽  

The road map in this research proves that the universe emerged from SUSY. Proving that, we link between two different classes of SM, fermions, and bosons in supersymmetry with their properties in the Standard Model of particle physics. According to SM properties, the bosons have spin one, while fermions have spin 1/2. We suggest differentiating between bosons and fermions angular momentum in our real world with a supersymmetrical state. We presume that bosons and fermions in their supersymmetric environment will have akin graviton spin angular momentum 2, while their superpartners will have spin one. In addition to that, in the supersymmetric environment, the fermion, boson, and their counterparts experience CPT conservation. They enjoy eternity with "Gravitons." Once upon a time, the boson and fermion descended from a supersymmetric state down through string theories' dimensions and M-theory's branes, stabilizing and forming SM quarks and, therefore, everything in our real world


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


2002 ◽  
Vol 3 (9) ◽  
pp. 1097-1106 ◽  
Author(s):  
Fawzi Boudjema ◽  
Dieter Zeppenfeld

Sign in / Sign up

Export Citation Format

Share Document