scholarly journals ON THE MOTION OF A TEST PARTICLE AROUND A GLOBAL MONOPOLE IN A MODIFIED GRAVITY

2012 ◽  
Vol 27 (30) ◽  
pp. 1250177 ◽  
Author(s):  
T. R. P. CARAMÊS ◽  
E. R. BEZERRA DE MELLO ◽  
M. E. X. GUIMARÃES

In this paper we suggest an approach to analyze the motion of a test particle in the spacetime of a global monopole within a f(R)-like modified gravity. The field equations are written in a simplified form in terms of [Formula: see text]. Since we are dealing with a spherically symmetric metric, we express F(R) as a function of the radial coordinate only, e.g., [Formula: see text]. So, the choice of a specific form for f(R) will be equivalent to adopt an Ansatz for [Formula: see text] . By choosing an explicit functional form for [Formula: see text], we obtain the weak field solutions for the metric tensor also compute the time-like geodesics and analyze the motion of a massive test particle. An interesting feature is an emerging attractive force exerted by the monopole on the particle.

Author(s):  
T. R. P. CARAMÊS ◽  
E. R. BEZERRA DE MELLO ◽  
M. E. X. GUIMARÃES

In this paper we analyze the gravitational field of a global monopole in the context of f(R) gravity. More precisely, we show that the field equations obtained are expressed in terms of [Formula: see text]. Since we are dealing with a spherically symmetric system, we assume that F(R) is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


1990 ◽  
Vol 68 (12) ◽  
pp. 1403-1409 ◽  
Author(s):  
T. Biech ◽  
A Das

In this paper we have sought solutions of the nonstatic spherically symmetric field equations that exhibit nonzero shear. The Lorentzian-warped product construction is used to present the spherically symmetric metric tensor in double-null coordinates. The field equations, kinematical quantities, and Riemann invariants are computed for a perfect-fluid stress-energy tensor. For a special observer, one of the field equations reduces to a form that admits wavelike solutions. Assuming a functional relationship between the metric coefficients, the remaining field equation becomes a second-order nonlinear differential equation that may be reduced as well.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650017 ◽  
Author(s):  
Dog̃ukan Taṣer ◽  
Melis Ulu Dog̃ru

We investigate spherically symmetric spacetime filled with global monopole and perfect fluid in [Formula: see text]-gravity. We consider field equations of [Formula: see text]-gravity in order to understand the global monopole and the perfect fluid curve to the spacetime. It has taken advantages of conformal symmetry properties of the spacetime to solve these equations. The obtained solutions are improved in case of phantom energy. It is shown that obtained [Formula: see text] function is consistent with well-known models of the modified gravity. Also, it is examined whether the obtained solutions support a traversable wormhole geometry. Obtained results of the solutions have been concluded.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 453 ◽  
Author(s):  
Manuel Hohmann

We provide a comprehensive overview of metric-affine geometries with spherical symmetry, which may be used in order to solve the field equations for generic gravity theories which employ these geometries as their field variables. We discuss the most general class of such geometries, which we display both in the metric-Palatini formulation and in the tetrad/spin connection formulation, and show its characteristic properties: torsion, curvature and nonmetricity. We then use these properties to derive a classification of all possible subclasses of spherically symmetric metric-affine geometries, depending on which of the aforementioned quantities are vanishing or non-vanishing. We discuss both the cases of the pure rotation group SO ( 3 ) , which has been previously studied in the literature, and extend these previous results to the full orthogonal group O ( 3 ) , which also includes reflections. As an example for a potential physical application of the results we present here, we study circular orbits arising from autoparallel motion. Finally, we mention how these results can be extended to cosmological symmetry.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
F. F. Faria

We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.


Particles ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Bobur Turimov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

An exact analytical, spherically symmetric, three-parametric wormhole solution has been found in the Einstein-scalar field theory, which covers the several well-known wormhole solutions. It is assumed that the scalar field is massless and depends on the radial coordinate only. The relation between the full contraction of the Ricci tensor and Ricci scalar has been found as RαβRαβ=R2. The derivation of the Einstein field equations have been explicitly shown, and the exact analytical solution has been found in terms of the three constants of integration. The several wormhole solutions have been extracted for the specific values of the parameters. In order to explore the physical meaning of the integration constants, the solution has been compared with the previously obtained results. The curvature scalar has been determined for all particular solutions. Finally, it is shown that the general solution describes naked singularity characterized by the mass, the scalar quantity and the throat.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950252 ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
Zarnoor

In this work, we discuss the stability of charged neutron star in the background of [Formula: see text] gravity and construct the generalized Tolman–Oppenheimer–Volkoff (TOV) equations. For this, we consider static spherically symmetric geometry to construct the hydrostatic equilibrium equation and deduce TOV equations from modified field equations with electromagnetic effects. We conclude that the generalized TOV equation depicts the stable stars configuration independent of the generic function of the modified gravity if the condition of uniform entropy and chemical composition is assumed.


2021 ◽  
pp. 2150164
Author(s):  
Weijun Li ◽  
Bo Yang ◽  
Cunliang Ma ◽  
Xia Zhou ◽  
Zhongwen Feng ◽  
...  

The precession effect of periastron for a massive test particle in the spacetime of a Janis–Newman–Winicour wormhole is studied in the weak field limit. Based on the metric of this static and spherically symmetric wormhole in harmonic coordinates, we derive the second post-Newtonian dynamics of the particle. The second-order orbital precession of periastron is then obtained via a post-Newtonian iterative technique under the Wagoner–Will–Epstein–Haugan representation. Our result is found to be consistent with the classical precession effect when the asymptotic scalar charge is dropped.


Sign in / Sign up

Export Citation Format

Share Document