Periastron precession due to a Janis–Newman–Winicour wormhole in the weak field limit

2021 ◽  
pp. 2150164
Author(s):  
Weijun Li ◽  
Bo Yang ◽  
Cunliang Ma ◽  
Xia Zhou ◽  
Zhongwen Feng ◽  
...  

The precession effect of periastron for a massive test particle in the spacetime of a Janis–Newman–Winicour wormhole is studied in the weak field limit. Based on the metric of this static and spherically symmetric wormhole in harmonic coordinates, we derive the second post-Newtonian dynamics of the particle. The second-order orbital precession of periastron is then obtained via a post-Newtonian iterative technique under the Wagoner–Will–Epstein–Haugan representation. Our result is found to be consistent with the classical precession effect when the asymptotic scalar charge is dropped.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Irina Dymnikova ◽  
Evgeny Galaktionov ◽  
Eduard Tropp

We address the question of correct description of Lagrange dynamics for regular electrically charged structures in nonlinear electrodynamics coupled to gravity. Regular spherically symmetric configuration satisfying the weak energy condition has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. The Maxwell weak field limitLF→Fasr→∞requires vanishing electric field at infinity. A field invariantFevolves between two minus zero in the center and at infinity which makes a LagrangianLFwith nonequal asymptotic limits inevitably branching. We formulate the appropriate nonuniform variational problem including the proper boundary conditions and present the example of the spherically symmetric Lagrangian describing electrically charged structure with the regular center.


2019 ◽  
Vol 49 ◽  
pp. 1960018 ◽  
Author(s):  
Bobomurat Ahmedov ◽  
Bobur Turimov ◽  
Zdeněk Stuchlík ◽  
Arman Tursunov

We study in the weak field limit the gravitational lensing by spherically symmetric compact object immersed in an asymptotically uniform magnetic field in the presence of plasma and our approach is based on the medium modified Hamiltonian one. We show that the magnetized plasma in the environment of compact object may lead to split of the Einstein cross, creating additional lensed components. Finally we calculate magnification and time delay related to the individual images.


Author(s):  
Mohammad Bagher Jahani Poshteh ◽  
Nematollah Riazi

A regular static, spherically symmetric electrically charged black hole solution of general relativity coupled to a new theory for nonlinear electrodynamics is presented. This theory has the interesting feature that, at far distances from the black hole, in the weak field limit, the theory reduces to Maxwell Lagrangian with Heisenberg–Euler correction term of quantum electrodynamics. The singular center of the black hole is replaced by flat, de Sitter, or anti de Sitter space, if the spacetime in which the black hole is embedded is asymptotically flat, de Sitter, or anti de Sitter, respectively. Requiring the correspondence to Heisenberg–Euler Lagrangian at large distances, in the weak field limit, we find that (i) a minimum mass is required for the formation of an event horizon for the regular static, spherically symmetric solution of the theory, and, (ii) the mass of the solution must be quantized. We also study the basic thermodynamic properties of the black hole solution and show that they are qualitatively similar to those of Reissner–Nordström black hole.


2004 ◽  
Vol 13 (02) ◽  
pp. 359-371 ◽  
Author(s):  
GIUSEPPE BASINI ◽  
MARCO RICCI ◽  
FULVIO BONGIORNO ◽  
SALVATORE CAPOZZIELLO

We investigate the weak-field limit of scalar-tensor theory of gravity and show that results are directly depending on the coupling and self-interaction potential of the scalar field. In particular, corrections are derived for the Newtonian potential. We discuss astrophysical applications of the results, in particular the flat rotation curves of spiral galaxies.


2017 ◽  
Vol 45 ◽  
pp. 1760046
Author(s):  
Lídice Cruz Rodríguez ◽  
Aurora Pérez Martínez ◽  
Gabriella Piccinelli ◽  
Elizabeth Rodríguez Querts

We study the Quantum Faraday rotation starting from the photon self-energy in the presence of a constant magnetic field. The Faraday angle is calculated in the non-degenerate regime and for weak field limit. Two physical scenarios, possibly characterized by these conditions, are the recombination epoch and the jets originated in pulsars. We discuss the resonant behavior that the Faraday angle exhibits in these scenarios and investigate the possibility of detecting cosmic magnetic fields through this resonant mechanism.


2010 ◽  
pp. 165-208
Author(s):  
Salvatore Capozziello ◽  
Valerio Faraoni

Sign in / Sign up

Export Citation Format

Share Document