scholarly journals COVARIANT REPRESENTATIONS OF THE DE SITTER ISOMETRY GROUP

2013 ◽  
Vol 28 (09) ◽  
pp. 1350033 ◽  
Author(s):  
ION I. COTĂESCU

We show that the induced representations of the de Sitter isometry group proposed many years ago by Nachtmann are equivalent to those derived from our general theory of external symmetry. These methods complete each other leading to a coherent theory of covariant fields with spin on the de Sitter spacetime. Some technical details of these representations are presented here for the first time.

2016 ◽  
Vol 13 (01) ◽  
pp. 1650002
Author(s):  
Emmanuele Battista ◽  
Giampiero Esposito ◽  
Paolo Scudellaro ◽  
Francesco Tramontano

The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild–de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild–de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s [Formula: see text] distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all [Formula: see text] terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.


2012 ◽  
Vol 56 (1) ◽  
pp. 38-42
Author(s):  
Ion I. Cotăescu

AbstractIt is shown that the isometry group of the de Sitter spacetime includes two different three-dimensional Abelian subgroups which transform between themselves through a discrete isometry corresponding to the time reversal in the five-dimensional Minkowski spacetime embedding the de Sitter one. The eigenfunctions of the generators of these Abelian subgroups form two different sets of quantum modes correlated by the mentioned isometry.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
E. T. Akhmedov ◽  
A. A. Artemev ◽  
I. V. Kochergin

2018 ◽  
Vol 27 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Xiaokai He ◽  
Jiliang Jing ◽  
Zhoujian Cao

Gravitational radiation plays an important role in astrophysics. Based on the fact that our universe is expanding, the gravitational radiation when a positive cosmological constant is presented has been studied along with two different ways recently, one is the Bondi–Sachs (BS) framework in which the result is shown by BS quantities in the asymptotic null structure, the other is the perturbation approach in which the result is presented by the quadrupoles of source. Therefore, it is worth to interpret the quantities in asymptotic null structure in terms of the information of the source. In this paper, we investigate this problem and find the explicit expressions of BS quantities in terms of the quadrupoles of source in asymptotically de Sitter spacetime. We also estimate how far away the source is, the cosmological constant may affect the detection of the gravitational wave.


2012 ◽  
Vol 27 (25) ◽  
pp. 1250150 ◽  
Author(s):  
F. R. KLINKHAMER

A simplified (but consistent) description of particle-production back-reaction effects in de Sitter spacetime is given.


Sign in / Sign up

Export Citation Format

Share Document