scholarly journals RELATIVE LOCALITY IN CURVED SPACETIME

2013 ◽  
Vol 28 (22) ◽  
pp. 1350101 ◽  
Author(s):  
JERZY KOWALSKI-GLIKMAN ◽  
GIACOMO ROSATI

In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.

2016 ◽  
Vol 25 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Giulia Gubitosi ◽  
Giovanni Palmisano

Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called [Formula: see text]-momentum space, with de Sitter (dS) metric and [Formula: see text]-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi–Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.


Entropy ◽  
2017 ◽  
Vol 19 (8) ◽  
pp. 400 ◽  
Author(s):  
Giovanni Amelino-Camelia

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Leonardo Barcaroli ◽  
Stefano Bianco ◽  
Laura Pensato

It was recently realized that Planck-scale momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual-curvature lensing, a feature which mainly affects the direction of observation of particles emitted by very distant sources. Several gray areas remain in our understanding of dual-curvature lensing, including the possibility that it might be just a coordinate artifact and the possibility that it might be in some sense a by-product of the better studied dual-curvature redshift. We stress that data reported by the IceCube neutrino telescope should motivate a more vigorous effort of investigation of dual-curvature lensing, and we observe that studies of the recently proposed “ρ-Minkowski noncommutative spacetime” could be valuable from this perspective. Through a dedicated ρ-Minkowski analysis, we show that dual-curvature lensing is not merely a coordinate artifact and that it can be present even in theories without dual-curvature redshift.


2016 ◽  
Vol 41 ◽  
pp. 1660126 ◽  
Author(s):  
Iarley P. Lobo ◽  
Giovanni Palmisano

For theories formulated with a maximally symmetric momentum space we propose a general characterization for the description of interactions in terms of the isometry group of the momentum space. The well known cases of [Formula: see text]-Poincaré-inspired and (2+1)-dimensional gravity-inspired composition laws both satisfy our condition. Future applications might include the proposal of a class of models based on momenta spaces with anti-de Sitter geometry.


Author(s):  
John Ellis ◽  
Marcos A. G. García ◽  
Natsumi Nagata ◽  
Dimitri V. Nanopoulos ◽  
Keith A. Olive ◽  
...  

After reviewing the motivations for cosmological inflation formulated in the formalism of supersymmetry, we argue that the appropriate framework is that of no-scale supergravity. We then show how to construct within this framework inflationary models whose predictions for the tilt in the spectrum of scalar perturbations, [Formula: see text], and the ratio, [Formula: see text], of tensor and scalar perturbations coincide with those of the [Formula: see text] model of inflation proposed by Starobinsky. A more detailed study of no-scale supergravity reveals a structure that is closely related to that of [Formula: see text] modifications of the minimal Einstein–Hilbert action for general relativity, opening avenues for constructing no-scale de Sitter and anti-de Sitter models by combining pairs of Minkowski models, as well as generalizations of the original no-scale Starobinsky models of inflation. We then discuss the phenomenology of no-scale models of inflation, including inflaton decay and reheating, and then the construction of explicit scenarios based on SU(5), SO(10) and string-motivated flipped SU(5)×U(1) GUT models. The latter provides a possible model of almost everything below the Planck scale, including neutrino masses and oscillations, the cosmological baryon asymmetry and cold dark matter, as well as [Formula: see text] and [Formula: see text].


Author(s):  
Carlos Castro Perelman

A brief review of the essentials of Asymptotic Safety and the Renormalization Group (RG) improvement of the Schwarzschild Black Hole that removes the r = 0 singularity is presented. It is followed with a RG-improvement of the Kantowski-Sachs metric associated with a Schwarzschild black hole interior and such that there is no singularity at t = 0 due to the running Newtonian coupling G(t) (vanishing at t = 0). Two temporal horizons at t _- \simeq t_P and t_+ \simeq t_H are found. For times below the Planck scale t < t_P, and above the Hubble time t > t_H, the components of the Kantowski-Sachs metric exhibit a key sign change, so the roles of the spatial z and temporal t coordinates are exchanged, and one recovers a repulsive inflationary de Sitter-like core around z = 0, and a Schwarzschild-like metric in the exterior region z > R_H = 2G_o M. The inclusion of a running cosmological constant \Lambda (t) follows. We proceed with the study of a dilaton-gravity (scalar-tensor theory) system within the context of Weyl's geometry that permits to single out the expression for the classical potential V (\phi ) = \kappa\phi^4, instead of being introduced by hand, and find a family of metric solutions which are conformally equivalent to the (Anti) de Sitter metric. To conclude, an ansatz for the truncated effective average action of ordinary dilaton-gravity in Riemannian geometry is introduced, and a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is explored.


2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


2009 ◽  
Vol 1 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Matthias Siemer

The core feature that distinguishes moods from emotions is that moods, in contrast to emotions, are diffuse and global. This article outlines a dispositional theory of moods (DTM) that accounts for this and other features of mood experience. DTM holds that moods are temporary dispositions to have or to generate particular kinds of emotion-relevant appraisals. Furthermore, DTM assumes that the cognitions and appraisals one is disposed to have in a given mood partly constitute the experience of mood. This article outlines a number of implications of DTM (e.g., regarding the noncognitive causation and rationality of moods) and summarizes empirical results supporting the theory.


Sign in / Sign up

Export Citation Format

Share Document