scholarly journals Planck-Scale Dual-Curvature Lensing and Spacetime Noncommutativity

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Leonardo Barcaroli ◽  
Stefano Bianco ◽  
Laura Pensato

It was recently realized that Planck-scale momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual-curvature lensing, a feature which mainly affects the direction of observation of particles emitted by very distant sources. Several gray areas remain in our understanding of dual-curvature lensing, including the possibility that it might be just a coordinate artifact and the possibility that it might be in some sense a by-product of the better studied dual-curvature redshift. We stress that data reported by the IceCube neutrino telescope should motivate a more vigorous effort of investigation of dual-curvature lensing, and we observe that studies of the recently proposed “ρ-Minkowski noncommutative spacetime” could be valuable from this perspective. Through a dedicated ρ-Minkowski analysis, we show that dual-curvature lensing is not merely a coordinate artifact and that it can be present even in theories without dual-curvature redshift.

2013 ◽  
Vol 28 (22) ◽  
pp. 1350101 ◽  
Author(s):  
JERZY KOWALSKI-GLIKMAN ◽  
GIACOMO ROSATI

In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.


2017 ◽  
Vol 26 (08) ◽  
pp. 1750076 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Leonardo Barcaroli ◽  
Giacomo D’Amico ◽  
Niccoló Loret ◽  
Giacomo Rosati

Momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual redshift, a feature which introduces energy dependence of the travel times of ultrarelativistic particles, and dual lensing, a feature which mainly affects the direction of observation of particles. In our recent paper [Phys. Lett. B 761 (2016) 318, arXiv:1605.00496 .], we explored the possibility that dual redshift might be relevant in the analysis of IceCube neutrinos, obtaining results which are preliminarily encouraging. Here, we explore the possibility that also dual lensing might play a role in the analysis of IceCube neutrinos. In doing so, we also investigate issues which are of broader interest, such as the possibility of estimating the contribution by background neutrinos and some noteworthy differences between candidate “early neutrinos” and candidate “late neutrinos”.


2010 ◽  
Vol 25 (28) ◽  
pp. 2381-2397 ◽  
Author(s):  
HYUN SEOK YANG

We explain how quantum gravity can be defined by quantizing spacetime itself. A pinpoint is that the gravitational constant [Formula: see text] whose physical dimension is of (length)2 in natural unit introduces a symplectic structure of spacetime which causes a noncommutative spacetime at the Planck scale L P . The symplectic structure of spacetime M leads to an isomorphism between symplectic geometry (M, ω) and Riemannian geometry (M, g) where the deformations of symplectic structure ω in terms of electromagnetic fields F = dA are transformed into those of Riemannian metric g. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity which is thus dubbed as the quantum equivalence principle.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guillem Domènech ◽  
Mark Goodsell ◽  
Christof Wetterich

Abstract A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson MH and the top quark Mt. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed MH∼ 125 GeV results in the prediction for the top quark mass Mt∼ 171 GeV, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of an SU(2) triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to Mt ∼ 172.5 GeV for a triplet mass of M∆ ∼ 108GeV. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of Mt due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740014 ◽  
Author(s):  
F. Benatti ◽  
R. Floreanini ◽  
S. Olivares ◽  
E. Sindici

Quantum-enhanced metrology is boosting interferometer sensitivities to extraordinary levels, up to the point where table-top experiments have been proposed to measure Planck-scale effects predicted by quantum gravity theories. In setups involving multiple photon interferometers, as those for measuring the so-called holographic fluctuations, entanglement provides substantial improvements in sensitivity. Entanglement is however a fragile resource and may be endangered by decoherence phenomena. We analyze how noisy effects arising either from the weak coupling to an external environment or from the modification of the canonical commutation relations in photon propagation may affect this entanglement-enhanced gain in sensitivity.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Giulia Gubitosi ◽  
Giovanni Palmisano

Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called [Formula: see text]-momentum space, with de Sitter (dS) metric and [Formula: see text]-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi–Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.


2013 ◽  
Vol 28 (07) ◽  
pp. 1350022 ◽  
Author(s):  
ROBERTO ONOFRIO

We conjecture that weak interactions are peculiar manifestations of quantum gravity at the Fermi scale, and that the Fermi constant is related to the Newtonian constant of gravitation. In this framework one may understand the violations of fundamental symmetries by the weak interactions, in particular parity violations, as due to fluctuations of the spacetime geometry at a Planck scale coinciding with the Fermi scale. As a consequence, gravitational phenomena should play a more important role in the microworld, and experimental settings are suggested to test this hypothesis.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2018 ◽  
Vol 33 (29) ◽  
pp. 1830028
Author(s):  
B. F. L. Ward

Working in the context of the Planck scale cosmology formulation of Bonanno and Reuter, we use our resummed quantum gravity approach to Einstein’s general theory of relativity to estimate the value of the cosmological constant as [Formula: see text]. We show that SUSY GUT models are constrained by the closeness of this estimate to experiment. We also address various consistency checks on the calculation. In particular, we use the Heisenberg uncertainty principle to remove a large part of the remaining uncertainty in our estimate of [Formula: see text].


2003 ◽  
Vol 12 (09) ◽  
pp. 1633-1639 ◽  
Author(s):  
GIOVANNI AMELINO-CAMELIA

Over the last few years the study of possible Planck-scale departures from classical Lorentz symmetry has been one of the most active areas of quantum-gravity research. We now have a satisfactory description of the fate of Lorentz symmetry in the most popular noncommutative spacetimes and several studies have been devoted to the fate of Lorentz symmetry in loop quantum gravity. Remarkably there are planned experiments with enough sensitivity to reveal these quantum-spacetime effects, if their magnitude is only linearly suppressed by the Planck length. Unfortunately, in some quantum-gravity scenarios even the strongest quantum-spacetime effects are suppressed by at least two powers of the Planck length, and many authors have argued that it would be impossible to test these quadratically-suppressed effects. I here observe that advanced cosmic-ray observatories and neutrino observatories can provide the first elements of an experimental programme testing the possibility of departures from Lorentz symmetry that are quadratically Planck-length suppressed.


Sign in / Sign up

Export Citation Format

Share Document