Relativistic Ramsauer–Townsend effect in minimal length framework

2015 ◽  
Vol 30 (32) ◽  
pp. 1550173 ◽  
Author(s):  
K. Jahankohan ◽  
H. Hassanabadi ◽  
S. Zarrinkamar

We consider the Ramsauer–Townsend effect in the presence of a generalized uncertainty principle (GUP) and within the Dirac equation framework for potential well, step potential and infinite well. The system characteristics are obtained in an exact analytical manner and the effect of minimal length parameter on the spectrum of the system is well-illustrated.

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.


2018 ◽  
Vol 33 (39) ◽  
pp. 1850231 ◽  
Author(s):  
A. Armat ◽  
S. Mohammad Moosavi Nejad

In this paper, our main aim is to obtain the transmission (T) and the reflection (R) coefficients for one-dimensional scattering state of the spin-[Formula: see text] particles in an interaction with a special nuclear potential. For this reason, at first, we consider Dirac equation and then obtain the Milne’s nonlinear differential equation due to minimal length from Schrödinger-like equation and then calculate the T- and R-coefficients using one-dimensional Woods–Saxon potential on the basis of the generalized uncertainty principle. Finally, we will check the validity and the correctness of our results.


2014 ◽  
Vol 92 (6) ◽  
pp. 484-487 ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Jafar Khodagholizadeh

Various approaches to quantum gravity, such as string theory, predict a minimal measurable length and a modification of the Heisenberg uncertainty principle near the Plank scale, known as the generalized uncertainty principle (GUP). Here we study the effects of GUP, which preserves the rotational symmetry of the space–time, on the Kepler problem. By comparing the value of the perihelion shift of the planet Mercury in Schwarzschild – de Sitter space–time with the resultant value of GUP, we find a relation between the minimal measurable length and the cosmological constant of the space–time. Now, if the cosmological constant varies with time, we have a variable minimal length in the space–time. Finally, we investigate the effects of GUP on the stability of circular orbits.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050106
Author(s):  
Marco Maceda ◽  
Jairo Villafuerte-Lara

We analyze a modified Dirac equation based on a noncommutative structure in phase space originating from a generalized uncertainty principle with a minimum length. The noncommutative structure induces generalized momenta and contributions to the energy levels of the standard Dirac equation. Applying techniques of perturbation theory, we find the lowest-order corrections to the energy levels and eigenfunctions of the Dirac equation in three dimensions for a spherically symmetric linear potential and for a square-well times triangular potential along one spatial dimension. We find that the corrections due to the noncommutative contributions may be of the same order as the relativistic ones, leading to an upper bound on the parameter fixing the minimum length induced by the generalized uncertainty principle.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maryam Roushan ◽  
Kourosh Nozari

We construct a Heisenberg algebra in Bargmann-Fock space in the presence of natural cutoffs encoded as minimal length, minimal momentum, and maximal momentum through a generalized uncertainty principle.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350029 ◽  
Author(s):  
M. M. STETSKO

We investigate a microscopic black hole in the case of modified generalized uncertainty principle with a minimal uncertainty in position as well as in momentum. We calculate thermodynamical functions of a Schwarzschild black hole such as temperature, entropy and heat capacity. It is shown that the incorporation of minimal uncertainty in momentum leads to minimal temperature of a black hole. Minimal temperature gives rise to appearance of a phase transition. Emission rate equation and black hole's evaporation time are also obtained.


Sign in / Sign up

Export Citation Format

Share Document