scholarly journals Weighing the black hole via quasi-local energy

2017 ◽  
Vol 32 (24) ◽  
pp. 1730021 ◽  
Author(s):  
Yuan K. Ha

We set to weigh the black holes at their event horizons in various spacetimes and obtain masses which are substantially higher than their asymptotic values. In each case, the horizon mass of a Schwarzschild, Reissner–Nordström, or Kerr black hole is found to be twice the irreducible mass observed at infinity. The irreducible mass does not contain electrostatic or rotational energy, leading to the inescapable conclusion that particles with electric charges and spins cannot exist inside a black hole. This is proposed as the External Energy Paradigm. A higher mass at the event horizon and its neighborhood is obligatory for the release of gravitational waves in binary black hole merging. We describe how these horizon mass values are obtained in the quasi-local energy approach and applied to the black holes of the first gravitational waves GW150914.

2017 ◽  
Vol 26 (12) ◽  
pp. 1743018 ◽  
Author(s):  
Yuan K. Ha

We evaluate the mass of the black holes of GW150914 at their event horizons via quasi-local energy approach and obtain the values of 71 and 57 solar masses, compared to their asymptotic values of 36 and 29 units, respectively, as reported by LIGO. A higher mass at the event horizon is compulsory in order to overcome the huge negative gravitational potential energy surrounding the black holes and allow for the emission of gravitational waves during merging. We estimate the initial mass of the stars which collapsed to form the black holes from the horizon mass and obtain the impressive values of 95 and 76 solar masses for these progenitor stars.


1996 ◽  
Vol 05 (06) ◽  
pp. 707-721 ◽  
Author(s):  
I. YA. AREF’EVA ◽  
I.V. VOLOVICH ◽  
K.S. VISWANATHAN

In a series of papers Amati, Ciafaloni and Veneziano and ’t Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this talk based on [10] we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves.


2017 ◽  
Vol 32 (39) ◽  
pp. 1730035 ◽  
Author(s):  
Keith Riles

Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordström black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordström black-holes they derive from the potential barriers surrounding them belonging to a special class.


2020 ◽  
Vol 498 (3) ◽  
pp. 3395-3402 ◽  
Author(s):  
Otto A Hannuksela ◽  
Thomas E Collett ◽  
Mesut Çalışkan ◽  
Tjonnie G F Li

ABSTRACT The current gravitational-wave (GW) localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the GW observation. However, we can constrain the lensing galaxy’s physical properties through both GW and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012027
Author(s):  
Subhrangshu Adhikary ◽  
Saikat Banerjee

Abstract The General Theory of Relativity, proposed by Albert Einstein theoretically predicted that very large accelerating mass creates ripples in spacetime which is the strongest for merging binary black hole system and the ripples can travel billions of light-years and these ripples are called Gravitational Waves. By the time these waves reach Earth, they become very faint and can’t be detected with regular methods. For this, LIGO has created specialized detectors based on the laser interference principle to detect strains caused by gravitational waves in e-19 scale. GW190521 is a gravitational wave event recorded on 21 May 2019 at 03:02:29 UTC and caused by the merger of two black holes of 85M© and 66 M© whose progenitor was the largest ever recorded. Throughout literature, very few amounts of autonomous black hole identification models have been made because of limited data availability. This experiment proposes methods for autonomous identification of black holes by using an unsupervised machine learning algorithm called Agglomerative Clustering with very little data to train which can adapt quickly to gravitational wave events. The model could be easily deployed near laser interferometric observatories for autonomous black hole identification with minimal effort.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Lang Liu ◽  
Øyvind Christiansen ◽  
Wen-Hong Ruan ◽  
Zong-Kuan Guo ◽  
Rong-Gen Cai ◽  
...  

AbstractExtending the electromagnetic and gravitational radiations from binary black holes with electric and magnetic charges in circular orbits in Liu et al. (Phys. Rev. D 102:103520, 2020), we calculate the total emission rates of energy and angular momentum due to gravitational and electromagnetic radiations from dyonic binary black holes in precessing elliptical orbits. It is shown that the emission rates of energy and angular momentum due to gravitational and electromagnetic radiations have the same dependence on the conic angle for different orbits. Moreover, we obtain the evolutions of orbits and find that a circular orbit remains circular while an elliptic orbit becomes quasi-circular due to electromagnetic and gravitational radiations. Using the evolution of orbits, we derive the waveform models for dyonic binary black hole inspirals and show the amplitudes of the gravitational waves for dyonic binary black hole inspirals differ from those for Schwarzschild binary black hole inspirals, which can be used to test electric and magnetic charges of black holes.


Author(s):  
Yuan K. Ha

We reveal three new discoveries in black hole physics previously unexplored in the Hawking era. These results are based on the remarkable 1971 discovery of the irreducible mass of the black hole by Christodoulou and Ruffini, and subsequently confirmed by Hawking. (1) The Horizon Mass Theorem states that the mass at the event horizon of any black hole — neutral, charged, or rotating — is always twice its irreducible mass observed at infinity. (2) The External Energy Theorem asserts that the rotational energy of a Kerr black hole exists completely outside the horizon. This is due to the fact that the irreducible mass does not contain rotational energy. (3) The Moment of Inertia Theorem shows that every black hole has a moment of inertia. When the rotation stops, the irreducible mass of a Kerr black hole becomes the moment of inertia of a Schwarzschild black hole. This is recognized as the rotational equivalent of the rest mass of a moving body in relativity. Thus after 50 years, the irreducible mass has gained a new and profound significance. No longer is it a limiting value in rotation, it determines black hole dynamics and structure. What is believed to be a black hole is a mechanical body with an extended structure. Astrophysical black holes are likely to be massive compact objects from which light cannot escape.


Author(s):  
J. A. Rueda ◽  
R. Ruffini

A long march of 50 years of successive theoretical progress and new physics discovered using observations of gamma-ray bursts has finally led to the formulation of an efficient mechanism able to extract the rotational energy of a Kerr black hole to power these most energetic astrophysical sources and active galactic nuclei. We here present the salient features of this long-sought mechanism, based on gravito-electrodynamics, and which represents an authentic shift of paradigm of black holes as forever “alive” astrophysical objects.


Sign in / Sign up

Export Citation Format

Share Document