Causality of 3D extended gravity theories

2019 ◽  
Vol 34 (16) ◽  
pp. 1950122
Author(s):  
Meguru Komada

Causality is one of the most important properties to understand gravity theories. It gives us not only a method to confirm that the gravity theories are really consistent, but also gives implications about the properties which unknown fundamental physics should obey. We investigate the causality of three-dimensional (3D) gravity theories, which are considered to be important, by using the Shapiro time delay effect in the Shock wave geometry. One of such gravity theories is the Zwei-Dreibein Gravity (ZDG) theory, which is a consistent 3D gravity theory. In ZDG theory, the serious problems can be removed that have appeared in another important gravity theory called New Massive Gravity (NMG). We study whether the ZDG theory could preserve the causality without losing the above good properties and how the causality structure is related to the structure of the NMG theory.

2000 ◽  
Vol 40 (supplement) ◽  
pp. S100
Author(s):  
A. Takamatsu ◽  
T. Fujii ◽  
I. Endo

2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Daniel Flores-Alfonso ◽  
Cesar S. Lopez-Monsalvo ◽  
Marco Maceda

1985 ◽  
Vol 9 (4) ◽  
pp. 224-227 ◽  
Author(s):  
Mohamed Abdel-Rohman

The time delay between measuring the structural response, and applying the designed active control forces may affect the controlled response of the structure if not taken into consideration. In this paper it is shown how to design the control forces to compensate for the delay effect. It is also shown that the time delay effect can be used as a criterion to judge the effectiveness of the proposed control mechanism. As an illustration of the theoretical consideration, a numerical example in which a tall building is controlled by means of active tendons is presented.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544015 ◽  
Author(s):  
Eric Bergshoeff ◽  
Wout Merbis ◽  
Alasdair J. Routh ◽  
Paul K. Townsend

Consistency of Einstein’s gravitational field equation [Formula: see text] imposes a “conservation condition” on the [Formula: see text]-tensor that is satisfied by (i) matter stress tensors, as a consequence of the matter equations of motion and (ii) identically by certain other tensors, such as the metric tensor. However, there is a third way, overlooked until now because it implies a “nongeometrical” action: one not constructed from the metric and its derivatives alone. The new possibility is exemplified by the 3D “minimal massive gravity” model, which resolves the “bulk versus boundary” unitarity problem of topologically massive gravity with Anti-de Sitter asymptotics. Although all known examples of the third way are in three spacetime dimensions, the idea is general and could, in principle, apply to higher dimensional theories.


2006 ◽  
Author(s):  
Peng Sun ◽  
Guotal Feng

A time-accurate three-dimensional Navier-Stokes solver of the unsteady flow field in a transonic fan was carried out using "Fluent-parallel" in a parallel supercomputer. The numerical simulation focused on a transonic fan with inlet square wave total pressure distortion and the analysis of result consisted of three aspects. The first was about inlet parameters redistribution and outlet total temperature distortion induced by inlet total pressure distortion. The pattern and causation of flow loss caused by pressure distortion in rotor were analyzed secondly. It was found that the influence of distortion was different at different radial positions. In hub area, transportation-loss and mixing-loss were the main loss patterns. Distortion not only complicated them but enhanced them. Especially in stator, inlet total pressure distortion induced large-scale vortex, which produced backflow and increased the loss. While in casing area, distortion changed the format of shock wave and increased the shock loss. Finally, the format of shock wave and the hysteresis of rotor to distortion were analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document