scholarly journals Matter versus vacuum oscillations at long-baseline accelerator neutrino experiments

2021 ◽  
Vol 36 (13) ◽  
pp. 2150098
Author(s):  
Suman Bharti ◽  
Ushak Rahaman ◽  
S. Uma Sankar

The neutrino oscillation probabilities at the long-baseline accelerator neutrino experiments are expected to be modified by matter effects. We search for evidence of such modification in the data of T2K and NO[Formula: see text]A, by fitting the data to the hypothesis of (a) matter modified oscillations and (b) vacuum oscillations. We find that vacuum oscillations provide as good a fit to the data as matter modified oscillations. Even extended runs of T2K and NO[Formula: see text]A, with five years in neutrino mode [Formula: see text] and five years in anti-neutrino mode [Formula: see text], cannot make a [Formula: see text] distinction between vacuum and matter modified oscillations. The future experiment DUNE, with neutrino and anti-neutrino runs of five years each [Formula: see text], can rule out vacuum oscillations by itself at [Formula: see text] if the hierarchy is normal. If the hierarchy is inverted, a [Formula: see text] discrimination against vacuum oscillations requires the combination of [Formula: see text] runs of T2K, NO[Formula: see text]A and DUNE.

2001 ◽  
Vol 16 (29) ◽  
pp. 1881-1886
Author(s):  
MOHAN NARAYAN ◽  
S. UMA SANKAR

Recently it is advocated that high intensity and low energy (Eν~2 GeV ) neutrino beams should be built to probe the (13) mixing angle ϕ to a level of a few parts in 104. Experiments using such beams will have better signal-to-background ratio in searches for νμ→νe oscillations. We propose that such experiments can also determine the sign of Δ31 even if the beam consists of neutrinos only. By measuring the νμ→νe transitions in two different energy ranges, the effects due to propagation of neutrinos through earth's crust can be isolated and the sign of Δ31 can be determined. If the sensitivity of an experiment to ϕ is ε, then the same experiment is automatically sensitive to matter effects and the sign of Δ31 for values of ϕ≥2ε.


Author(s):  
Sandhya Choubey

Neutrino physics has come a long way and made great strides in the past decades. We discuss the prospects of what more can be learned in this field in the forthcoming neutrino oscillation facilities. We will mostly focus on the potential of the long-baseline experiments and the atmospheric neutrino experiments. Sensitivity of these experiments to standard neutrino oscillation parameters will be presented. We will also discuss the prospects of new physics searches at these facilities.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1855-1868 ◽  
Author(s):  
ALAN W. P. POON

Over the last several years, experiments have conclusively demonstrated that neutrinos are massive and that they mix. There is now direct evidence for νe s from the Sun transforming into other active flavors while en route to the Earth. The disappearance of reactor [Formula: see text], predicted under the assumption of neutrino oscillation, has also been observed. In this paper, recent results from solar and reactor neutrino experiments and their implications are reviewed. In addition, some of the future experimental endeavors in solar and reactor neutrinos are presented.


2020 ◽  
Vol 35 (17) ◽  
pp. 2050142
Author(s):  
Monojit Ghosh ◽  
Osamu Yasuda

It was shown that the tension between the mass-squared differences obtained from solar neutrinos and those acquired through KamLAND experiments may be solved by the introduction of a non-standard flavor-dependent interaction (NSI) in neutrino propagation. In this study, we discuss the possibility of testing such a hypothesis using the future long-baseline neutrino experiments T2HKK and DUNE. Assuming that the NSI does not exist, we provide the excluded region within the ([Formula: see text], [Formula: see text]) plane, where [Formula: see text] and [Formula: see text] are the parameters appearing in the solar neutrino analysis conducted with the NSI. We find that the best fit value from the solar neutrino and KamLAND data (global analysis of a particular coupling to quarks) can be tested at more than [Formula: see text] by these two experiments for most of the parameter space.


2000 ◽  
Vol 578 (1-2) ◽  
pp. 27-57 ◽  
Author(s):  
M. Freund ◽  
M. Lindner ◽  
S.T. Petcov ◽  
A. Romanino

2008 ◽  
Vol 23 (21) ◽  
pp. 3388-3394
Author(s):  
HISAKAZU MINAKATA

I discuss why and how powerful is the two-detector setting in neutrino oscillation experiments. I cover three concrete examples: (1) reactor θ13 experiments, (2) T2KK, Tokai-to-Kamioka-Korea two-detector complex for measuring CP violation, determining the neutrino mass hierarchy, and resolving the eight-fold parameter degeneracy, (3) two-detector setting in a neutrino factory at baselines 3000 km and 7000 km for detecting effects of non-standard interactions (NSI) of neutrinos.


2005 ◽  
Vol 20 (01) ◽  
pp. 1-17 ◽  
Author(s):  
OLGA MENA

We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three-family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13 and the CP-phase δ. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.


Author(s):  
M. G. Aartsen ◽  
M. Ackermann ◽  
J. Adams ◽  
J. A. Aguilar ◽  
M. Ahlers ◽  
...  

AbstractThe Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $$\sim 1\,\mathrm {GeV}$$∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of $$p_\mathrm {IO} = 15.3\%$$pIO=15.3% and $$\mathrm {CL}_\mathrm {s}=53.3\%$$CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $$\delta _\mathrm {CP}$$δCP and obtained from energies $$E_\nu \gtrsim 5\,\mathrm {GeV}$$Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.


Sign in / Sign up

Export Citation Format

Share Document