GROUND STATE OF N HARMONICALLY BOUND ANYONS IN A MAGNETIC FIELD

1992 ◽  
Vol 07 (38) ◽  
pp. 3593-3600
Author(s):  
R. CHITRA

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.

1993 ◽  
Vol 08 (09) ◽  
pp. 827-836 ◽  
Author(s):  
JEAN-GUY DEMERS

A charged point particle interacting with a vortex in 2+1 dimensions (or the relative coordinate of two anyons) possesses a dynamical so(2, 1) symmetry that can be exploited to solve for the case when an external harmonic oscillator potential is added. Moreover, if the particle carries spin 1/2, its interaction with the vortex exhibits a dynamical spl*(2, 1) supersymmetry, which can be imported to the cases where a harmonic oscillator or an external magnetic field is present. Using this supersymmetry, the corresponding Pauli Hamiltonians can be solved algebraically.


2006 ◽  
Vol 20 (32) ◽  
pp. 5417-5425
Author(s):  
HONG-YI FAN ◽  
TONG-TONG WANG ◽  
YAN-LI YANG

We show that the recently proposed invariant eigenoperator method can be successfully applied to solving energy levels of electron in an anisotropic quantum dot in the presence of a uniform magnetic field (UMF). The result reduces to the energy level of electron in isotropic harmonic oscillator potential and in UMF naturally. The Landau diamagnetism decreases due to the existence of the anisotropic harmonic potential.


2007 ◽  
Vol 21 (06) ◽  
pp. 327-337 ◽  
Author(s):  
ZI-XIANG HU ◽  
YOU-QUAN LI

We investigate the ground state persistent spin current and the pair entanglement in one-dimensional antiferromagnetic anisotropic Heisenberg ring with twisted boundary conditions. By solving Bethe ansatz equations numerically, we calculate the dependence of the ground state energy on the total magnetic flux through the ring, and the resulting persistent current. Motivated by the recent development of the quantum entanglement theory, we study the properties of the ground state concurrence under the influence of the flux through the anisotropic Heisenberg ring. We also include an external magnetic field and discuss the properties of the persistent current and the concurrence in the presence of the magnetic field.


1980 ◽  
Vol 21 (7) ◽  
pp. 1908-1915 ◽  
Author(s):  
C. S. Kalman ◽  
Richard L. Hall ◽  
Sushil K. Misra

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dirk Wulferding ◽  
Youngsu Choi ◽  
Seungyeol Lee ◽  
Mikhail A. Prosnikov ◽  
Yann Gallais ◽  
...  

AbstractThe Shastry–Sutherland compound SrCu2(BO3)2 constituting orthogonally coupled dimers harbors an S = 0 singlet ground state. The confluence of strong interdimer interaction and frustration engenders a spectrum of low-energy excitations including localized triplons as well as singlet and triplet bound states. Their dynamics are controlled by an external magnetic field and temperature. Here, we employ high-field Raman spectroscopy to map the field and temperature evolution of such bosonic composite quasiparticles on approaching the 1/8 magnetization plateau. Our study unveils that the magnetic field and thermal fluctuations show remarkably similar effects in melting the singlet bound states, but are disparate in their effects on the fine spectral shapes. This, together with the anti-crossing of two singlet bound states in the intermediate field B = 10 − 16 T, is discussed in terms of the correlated dynamics of frustrated, interacting bosons.


1996 ◽  
Vol 11 (18) ◽  
pp. 1489-1495 ◽  
Author(s):  
P. ROY

It is shown that the two-anyon system in a harmonic oscillator potential and in a constant magnetic field admits certain q-deformed symmetry algebras realized over the space of wave functions of the respective systems.


2011 ◽  
Vol 228-229 ◽  
pp. 1007-1011
Author(s):  
Wei Wei Zhang ◽  
Long Qiu Li ◽  
Guang Yu Zhang ◽  
Hui Juan Dong

The effect of an external magnetic field on the hydration behavior of nanoscopic n-octane plates has been extensively investigated using molecular dynamics simulation in an isothermal-isobaric ensemble. The solute plates with different intermolecular spacing have also been considered to examine the effect of the topology of hydrophobic plates on the adsorption behavior of confined water in the presence of an external magnetic field with an intensity ranging from 0.1T to 1 T. The results demonstrate that magnetic exposure decreases the density of water for the plates with intermolecular spacing of a0 = 4 and 5 Å. This suggests that the free energy barrier for evaporation can be lowered by the applied field, and the hydrophobic solutes consisting of condensed n-octane molecules are apt to aggregate in the aqueous solution. In contrast, the magnetic field improves the dissolution or wetting of solutes comprised of loosely packed n-octane plates of a0=7Å. A magnetic-field-induced adsorption-to-desorption translation, which is in agreement with the experimental results provided by Ozeki, has also been observed for the plates with intermolecular spacing of a0 = 6 Å.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. K. Bahar ◽  
F. Yasuk

Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.


2013 ◽  
Vol 87 (13) ◽  
Author(s):  
Roman Verba ◽  
Vasil Tiberkevich ◽  
Konstantin Guslienko ◽  
Gennadiy Melkov ◽  
Andrei Slavin

Sign in / Sign up

Export Citation Format

Share Document