scholarly journals THE GAUGE HIERARCHY PROBLEM AND HIGHER-DIMENSIONAL GAUGE THEORIES

1998 ◽  
Vol 13 (32) ◽  
pp. 2601-2611 ◽  
Author(s):  
HISAKI HATANAKA ◽  
TAKEO INAMI ◽  
C. S. LIM

We report on an attempt to solve the gauge hierarchy problem in the framework of higher-dimensional gauge theories. Both classical Higgs mass and quadratically divergent quantum correction to the mass are argued to be vanished. Hence the hierarchy problem in its original sense is solved. The remaining finite mass correction is shown to depend crucially on the choice of boundary condition for matter fields, and a way to fix it dynamically is presented. We also point out that on the simply-connected space S2 even the finite mass correction vanishes.

2005 ◽  
Vol 20 (27) ◽  
pp. 6133-6148 ◽  
Author(s):  
FRANCESCO SANNINO

Here I summarize some of the salient features of technicolor theories with technifermions in higher dimensional representations of the technicolor gauge group. The expected phase diagram as function of number of flavors and colors for the two index (anti)symmetric representation of the gauge group is reviewed. After having constructed the simplest walking technicolor theory one can show that it is not at odds with the precision measurements. The simplest theory also requires, for consistency, a fourth family of heavy leptons. The latter may result in an interesting signature at LHC. In the case of a fourth family of leptons with ordinary lepton hypercharge the new heavy neutrino can be a natural candidate of cold dark matter. New theories will also be proposed in which the critical number of flavors needed to enter the conformal window is higher than in the one with fermions in the two-index symmetric representation, but lower than in the walking technicolor theories with fermions only in the fundamental representation of the gauge group. Due to the near conformal/chiral phase transition the composite Higgs is very light compared to the intrinsic scale of the technicolor theory. For the two technicolor theory the composite Higgs mass is predicted not to exceed 150 GeV.


2010 ◽  
Vol 25 (04) ◽  
pp. 283-293 ◽  
Author(s):  
JITESH R. BHATT ◽  
SUDHANWA PATRA ◽  
UTPAL SARKAR

The gravitational corrections to the gauge coupling constants of Abelian and non-Abelian gauge theories have been shown to diverge quadratically. Since this result will have interesting consequences, this has been analyzed by several authors from different approaches. We propose to discuss this issue from a phenomenological approach. We analyze the SU(5) gauge coupling unification and argue that the gravitational corrections to gauge coupling constants may not vanish when higher dimensional non-renormalizable terms are included in the problem.


2007 ◽  
Vol 16 (05) ◽  
pp. 1437-1443
Author(s):  
AKINA KATO ◽  
TAKUYA MOROZUMI ◽  
NORIMI YOKOZAKI ◽  
SYN KYU KANG

Seesaw model is an attractive model because it may explain baryogenesis through leptogenesis and also may explain the small neutrino mass. The supersymmetric seesaw model may be more attractive because the naturalness problem is absent in supersymmetric theory. Recently, the higgs mass correction due to leptons and sleptons loops is computed.1 In this talk, we report on the preliminary results on the one loop corrections of leptons and sleptons loops to the effective action of Higgs sector for super symmetric seesaw model. Our results show that the corrections to the mass parameters for Higgs sector are proportional to the soft breaking parameters of supersymmetric seesaw model, while for the quartic couplings of Higgs fields, the corrections are suppressed by inverse powers of the right-handed neutrino mass.


2007 ◽  
Vol 22 (28) ◽  
pp. 5155-5172 ◽  
Author(s):  
R. B. MANN ◽  
E. M. POPESCU

Non-Abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher-dimensional (two-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-Abelian generalizations of the Yang–Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in 2+1 dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields — the ΣΦEA model — can be formulated as a higher gauge theory (as well as a standard gauge theory). Since the model has a very rich structure — it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson–Friedman–Walker cosmological-like expanding geometries — this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in 2+1 dimensions coupled to matter in an entirely new framework.


2006 ◽  
Vol 21 (08) ◽  
pp. 621-637 ◽  
Author(s):  
MU-CHUN CHEN

The little Higgs idea is an alternative to supersymmetry as a solution to the gauge hierarchy problem. Here we review various little Higgs models and their phenomenology with emphases on the precision electroweak constraints in these models.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950029
Author(s):  
Akira Kokado ◽  
Takesi Saito

Corrections to Newton’s inverse law have been so far considered, but not clear in warped higher dimensional worlds, because of complexity of the Einstein equation. Here, we give a model of a warped 6D world with an extra 2D sphere. We take a general energy–momentum tensor, which does not depend on a special choice of bulk matter fields. The 6D Einstein equation reduces to the spheroidal differential equation, which can be easily solved. The gravitational potential in our 4D universe is calculated to be composed of infinite series of massive Yukawa potentials coming from the KK mode, together with Newton’s inverse law. The series of Yukawa type potentials converges well to behave as [Formula: see text] near [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document