scholarly journals GAUGE CONSISTENT WILSON RENORMALIZATION GROUP II: THE NON-ABELIAN CASE

2000 ◽  
Vol 15 (14) ◽  
pp. 2153-2179 ◽  
Author(s):  
M. SIMIONATO

We give a Wilsonian formulation of non-Abelian gauge theories explicitly consistent with axial gauge Ward identities. The issues of unitarity and dependence on the quantization direction are carefully investigated. A Wilsonian computation of the one-loop QCD beta function is performed.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


1999 ◽  
Vol 14 (14) ◽  
pp. 2257-2271 ◽  
Author(s):  
KASPER OLSEN ◽  
RICARDO SCHIAPPA

We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one-loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one-loop order. The issue of heterotic anomalies and their cancellation is addressed from this duality constraining viewpoint.


2001 ◽  
Vol 16 (11) ◽  
pp. 2101-2104 ◽  
Author(s):  
P. PANZA ◽  
R. SOLDATI

The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.


2001 ◽  
Vol 16 (11) ◽  
pp. 2125-2130
Author(s):  
M. SIMIONATO

I study a class of Wilsonian formulations of non-Abelian gauge theories in algebraic noncovariant gauges where the Wilsonian infrared cutoff Λ is inserted as a mass term for the propagating fields. In this way the Ward-Takahashi identities are preserved to all scales. Nevertheless the BRS-invariance in broken and the theory is gauge-dependent and unphysical at Λ≠ 0. Then I discuss the infrared limit Λ→0. I show that the singularities of the axial gauge choice are avoided in planar gauge and in light-cone gauge. Finally the rectangular Wilson loop of size 2L×2T is evaluated at lowest order in perturbation theory and a noncommutativity between the limits Λ→0 and T→∞ is pointed out.


1999 ◽  
Vol 14 (13) ◽  
pp. 809-819
Author(s):  
ISBELIA MARTÍN

We study an extension of the procedure to construct duality transformations among Abelian gauge theories to the non-Abelian case using a path space formulation. We define a pre-dual functional in path space and introduce a particular nonlocal map among Lie algebra valued one-form functionals which reduces to the ordinary Hodge-⋆ duality map of the Abelian theories. Further, we establish a full set of equations on path space representing the ordinary Yang–Mills equations and Bianchi identities of non-Abelian gauge theories of four-dimensional Euclidean space.


Sign in / Sign up

Export Citation Format

Share Document