MEASUREMENTS OF THE NORMAL AND SHAPE DEPENDENT CASIMIR FORCES USING AN ATOMIC FORCE MICROSCOPE

2002 ◽  
Vol 17 (06n07) ◽  
pp. 711-721 ◽  
Author(s):  
F. CHEN ◽  
B. W. HARRIS ◽  
A. ROY ◽  
U. MOHIDEEN

The precision instrumental developments and the modern unification theories using compact dimensions have motivated a resurgence in the field of Casimir force measurements. Here, after a brief discussion of the history of Casimir force measurements, the experimental results of Casimir force measurements using an Atomic Force Microscope will be presented. Precision measurements of the normal Casimir force, demonstration of the shape dependent Casimir force and the lateral Casimir force will be presented.

2010 ◽  
Vol 25 (11) ◽  
pp. 2231-2239 ◽  
Author(s):  
S. DE MAN ◽  
K. HEECK ◽  
K. SMITH ◽  
R. J. WIJNGAARDEN ◽  
D. IANNUZZI

We present a short overview of the recent efforts of our group in the design of high precision Casimir force setups. We first describe our Atomic Force Microscope based technique that allows one to simultaneously and continuously calibrate the instrument, compensate for a residual electrostatic potential, measure the Casimir force, and, in the presence of a fluid in the gap between the interacting surfaces, measure the hydrodynamic force. Then we briefly discuss a new force sensor that adapts well to Casimir force measurements in critical environments.


2008 ◽  
Vol 41 (16) ◽  
pp. 164022 ◽  
Author(s):  
Hsiang-Chih Chiu ◽  
Chia-Cheng Chang ◽  
R Castillo-Garza ◽  
F Chen ◽  
U Mohideen

2002 ◽  
Vol 17 (29) ◽  
pp. 4143-4152 ◽  
Author(s):  
G. L. KLIMCHITSKAYA ◽  
U. MOHIDEEN

Constraints on the Yukawa-type long-range interactions following from the Casimir effect are considered. The constraints obtained from the recent Casimir force measurements by means of a torsion pendulum and an atomic force microscope are collected and compared. New constraints are obtained from the measurement of the lateral Casimir force. The conclusion is made that the Casimir effect has an advantage over the conventional methods in obtaining stronger constraints on hypothetical interactions.


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Thermal radiative transfer between objects as well as near-field forces such as van der Waals or Casimir forces have their origins in the fluctuations of the electrodynamic field. Near-field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far-field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoff’s laws. Despite this common origin, experimental techniques of measuring near-field forces (using the surface force apparatus and the atomic force microscope) are more sophisticated than techniques of measuring near-field radiative transfer. In this work, we present an ultra-sensitive experimental technique of measuring near-field using a bi-material atomic force microscope cantilever as the thermal sensor. Just as measurements of near-field forces results in a “force distance curve”, measurement of near-field radiative transfer results in a “heat transfer-distance” curve. Results from the measurement of near-field radiative transfer will be presented.


Sign in / Sign up

Export Citation Format

Share Document