Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

Author(s):  
Jin W. Kwek ◽  
Ivan U. Vakarelski ◽  
Wai K. Ng ◽  
Jerry Y.Y. Heng ◽  
Reginald B.H. Tan
NANO ◽  
2015 ◽  
Vol 10 (03) ◽  
pp. 1550038 ◽  
Author(s):  
Yan Jiang ◽  
Lili Yue ◽  
Boshen Yan ◽  
Xi Liu ◽  
Xiaofei Yang ◽  
...  

We investigated friction on an n-type silicon surface using an atomic force microscope when a bias voltage was applied to the sample. Friction forces on the same track line were measured before and after the bias voltages were applied and it was found that the friction forces in n-type silicon can be tuned reversibly with the bias voltage. The dependence of adhesion forces between the silicon nitride tip and Si sample on the bias voltages approximately follows a parabolic law due to electrostatic force, which results in a significant increase in the friction force at an applied electric field.


2010 ◽  
Vol 25 (11) ◽  
pp. 2231-2239 ◽  
Author(s):  
S. DE MAN ◽  
K. HEECK ◽  
K. SMITH ◽  
R. J. WIJNGAARDEN ◽  
D. IANNUZZI

We present a short overview of the recent efforts of our group in the design of high precision Casimir force setups. We first describe our Atomic Force Microscope based technique that allows one to simultaneously and continuously calibrate the instrument, compensate for a residual electrostatic potential, measure the Casimir force, and, in the presence of a fluid in the gap between the interacting surfaces, measure the hydrodynamic force. Then we briefly discuss a new force sensor that adapts well to Casimir force measurements in critical environments.


Sign in / Sign up

Export Citation Format

Share Document