Precision Tests of the Electroweak Theory

2003 ◽  
Vol 18 (21) ◽  
pp. 3591-3627
Author(s):  
Atul Gurtu

Electroweak data from the high energy electron–positron and proton–antiproton colliders are reviewed. On the whole the data is consistent with and supports the predictions of the electroweak theory. However, a crucial prediction of the theory remains to be verified: the existence of the Higgs boson and its light mass, less than 193 GeV, obtained from a fit to all the data within the electroweak framework. The lower limit on its mass from direct searches being 114 GeV, the mass of the Higgs is fixed within a narrow range which is expected to be explored at the Fermilab Tevatron experiments or later at the Large Hadron Collider at CERN.

2014 ◽  
Vol 29 (04) ◽  
pp. 1430004 ◽  
Author(s):  
Dezső Horváth

The 40 years old Standard Model, the theory of particle physics, seems to describe all experimental data very well. All of its elementary particles were identified and studied apart from the Higgs boson until 2012. For decades, many experiments were built and operated searching for it, and finally, the two main experiments of the Large Hadron Collider (LHC) at CERN, CMS and ATLAS, in 2012 observed a new particle with properties close to those predicted for the Higgs boson. In this paper, we outline the search story: the exclusion of the Higgs boson at the Large Electron Positron (LEP) collider, and its observation at LHC.


Author(s):  
Rolf-Dieter Heuer

This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron–proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.


Author(s):  
G. Dissertori

Enormous efforts at accelerators and experiments all around the world have gone into the search for the long-sought Higgs boson, postulated almost five decades ago. This search has culminated in the discovery of a Higgs-like particle by the ATLAS and CMS experiments at CERN's Large Hadron Collider in 2012. Instead of describing this widely celebrated discovery, in this article I will rather focus on earlier attempts to discover the Higgs boson, or to constrain the range of possible masses by interpreting precise data in the context of the Standard Model of particle physics. In particular, I will focus on the experimental efforts carried out during the last two decades, at the Large Electron Positron collider, CERN, Geneva, Switzerland, and the Tevatron collider, Fermilab, near Chicago, IL, USA.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
M.A. Arroyo-Ureña ◽  
T.A. Valencia-Pérez ◽  
R. Gaitán ◽  
J.H. Montes de Oca Y ◽  
A. Fernández-Téllez

Abstract We study the flavor-changing decay h → τ μ with τ = τ− +τ+ and μ = μ− +μ+ of a Higgs boson at future hadron colliders, namely: a) High Luminosity Large Hadron Collider, b) High Energy Large Hadron Collider and c) Future hadron-hadron Circular Collider. The theoretical framework adopted is the Two-Higgs-Doublet Model type III. The free model parameters involved in the calculation are constrained through Higgs boson data, Lepton Flavor Violating processes and the muon anomalous magnetic dipole moment; later they are used to analyze the branching ratio of the decay h → τ μ and to evaluate the gg → h production cross section. We find that at the Large Hadron Collider is not possible to claim for evidence of the decay h → τ μ achieving a signal significance about of 1.46σ by considering its final integrated luminosity, 300 fb−1. More promising results arise at the High Luminosity Large Hadron Collider in which a prediction of 4.6σ when an integrated luminosity of 3 ab−1 and tan β = 8 are achieved. Meanwhile, at the High Energy Large Hadron Collider (Future hadron-hadron Circular Collider) a potential discovery could be claimed with a signal significance around 5.04σ (5.43σ) for an integrated luminosity of 3 ab−1 and tan β = 8 (5 ab−1 and tan β = 4).


2008 ◽  
Vol 01 (01) ◽  
pp. 99-120 ◽  
Author(s):  
D. A. Edwards ◽  
H. T. Edwards

The purpose of this article is to outline the development of particle colliders from their inception just over a half-century ago, expand on today's achievements, and remark on the potential of coming years. There are three main sections, entitled "Past," "Present," and "Future." "Past" starts with the electron and electron–positron colliders of the 1950s, continues through the proton rings at CERN, and concludes with LEP. Technology development enters the section Present, "which includes not only the major colliders in both the lepton and baryon worlds, but also recognition of the near-immediate entry of the Large Hadron Collider. "Future" looks at the next potential steps, the most prominent of which is an electron–positron partner to the LHC, but there are other very interesting propositions undergoing exploration that include muon storage and even conceivably departure from reliance on radio frequency acceleration.


2016 ◽  
Vol 31 (18) ◽  
pp. 1650108 ◽  
Author(s):  
Charanjit K. Khosa ◽  
P. N. Pandita

We consider the measurement of the trilinear couplings of the neutral Higgs bosons in the minimal supersymmetric standard model (MSSM) at a high energy [Formula: see text] linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify the state observed at the LHC with the lightest Higgs boson [Formula: see text] of the MSSM, and impose the constraints following from this identification, as well as other experimental constraints on the MSSM parameter space. In order to measure trilinear neutral Higgs couplings, we consider different processes where the heavier Higgs boson [Formula: see text] of the MSSM is produced in electron–positron collisions, which subsequently decays into a pair of lighter Higgs boson. We identify the regions of the MSSM parameter space where it may be possible to measure the trilinear couplings of the Higgs boson at a future electron–positron collider. A measurement of the trilinear Higgs couplings is a crucial step in the construction of the Higgs potential, and hence in establishing the phenomena of spontaneous symmetry breaking in gauge theories.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Alexiades Armenakas ◽  
Oliver K. Baker

AbstractWith the advent of the High-Luminosity Large Hadron Collider (HL-LHC) era, high energy physics (HEP) event selection will require new approaches to rapidly and accurately analyze vast databases. The current study addresses the enormity of HEP databases in an unprecedented manner—a quantum search using Grover’s Algorithm (GA) on an unsorted database, ATLAS Open Data, from the ATLAS detector. A novel method to identify rare events at 13 TeV in CERN’s LHC using quantum computing (QC) is presented. As indicated by the Higgs boson decay channel $$H\rightarrow ZZ^*\rightarrow 4l$$ H → Z Z ∗ → 4 l , the detection of four leptons in one event may be used to reconstruct the Higgs boson and, more importantly, evince Higgs boson decay to some new phenomena, such as $$H\rightarrow ZZ_d \rightarrow 4l$$ H → Z Z d → 4 l . Searching the dataset for collisions resulting in detection of four leptons using a Jupyter Notebook, a classical simulation of GA, and several quantum computers with multiple qubits, the current application was found to make the proper selection in the unsorted dataset. Quantum search efficacy was analyzed for the incoming HL-LHC by implementing the QC method on multiple classical simulators and IBM’s quantum computers with the IBM Qiskit Open Source Software. The current QC application provides a novel, high-efficiency alternative to classical database searches, demonstrating its potential utility as a rapid and increasingly accurate search method in HEP.


Sign in / Sign up

Export Citation Format

Share Document