scholarly journals Flavor-changing decay h → τ μ at super hadron colliders

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
M.A. Arroyo-Ureña ◽  
T.A. Valencia-Pérez ◽  
R. Gaitán ◽  
J.H. Montes de Oca Y ◽  
A. Fernández-Téllez

Abstract We study the flavor-changing decay h → τ μ with τ = τ− +τ+ and μ = μ− +μ+ of a Higgs boson at future hadron colliders, namely: a) High Luminosity Large Hadron Collider, b) High Energy Large Hadron Collider and c) Future hadron-hadron Circular Collider. The theoretical framework adopted is the Two-Higgs-Doublet Model type III. The free model parameters involved in the calculation are constrained through Higgs boson data, Lepton Flavor Violating processes and the muon anomalous magnetic dipole moment; later they are used to analyze the branching ratio of the decay h → τ μ and to evaluate the gg → h production cross section. We find that at the Large Hadron Collider is not possible to claim for evidence of the decay h → τ μ achieving a signal significance about of 1.46σ by considering its final integrated luminosity, 300 fb−1. More promising results arise at the High Luminosity Large Hadron Collider in which a prediction of 4.6σ when an integrated luminosity of 3 ab−1 and tan β = 8 are achieved. Meanwhile, at the High Energy Large Hadron Collider (Future hadron-hadron Circular Collider) a potential discovery could be claimed with a signal significance around 5.04σ (5.43σ) for an integrated luminosity of 3 ab−1 and tan β = 8 (5 ab−1 and tan β = 4).

Author(s):  
B. C. Allanach ◽  
Tyler Corbett ◽  
Maeve Madigan

Abstract We estimate the future sensitivity of the high luminosity (HL-) and high energy (HE-) modes of the Large Hadron Collider (LHC) and of a 100 TeV future circular collider (FCC-hh) to leptoquark (LQ) pair production in the muon-plus-jet decay mode of each LQ. Such LQs are motivated by the fact that they provide an explanation for the neutral current B-anomalies. For each future collider, Standard Model (SM) backgrounds and detector effects are simulated. From these, sensitivities of each collider are found. Our measures of sensitivity are based upon a Run II ATLAS search, which we also use for validation. We illustrate with a narrow scalar (‘$$S_3$$S3’) LQ and find that, in our channel, the HL-LHC has exclusion sensitivity to LQ masses up to 1.8 TeV, the HE-LHC up to 4.8 TeV and the FCC-hh up to 13.5 TeV.


2018 ◽  
Vol 182 ◽  
pp. 02018
Author(s):  
Valeria Botta

The most recent measurements of the Higgs H(125) boson in several final states, including decays to bosons, fermions, and the associated production of a Higgs boson with top quarks, are reviewed. Results have been obtained analysing the protonproton collision data collected with the CMS detector at the Large Hadron Collider (LHC) in 2016, corresponding to an integrated luminosity of 35.9 fb-1 at a centre-of-mass energy of 13 TeV.


2011 ◽  
Vol 26 (05) ◽  
pp. 309-317
Author(s):  
◽  
DAN GREEN

The Large Hadron Collider (LHC) began 7 TeV C.M. energy operation in April, 2010. The CMS experiment immediately analyzed the earliest data taken in order to "rediscover" the Standard Model (SM) of high energy physics. By the late summer, all SM particles were observed and CMS began to search for physics beyond the SM and beyond the present limits set at the Fermilab Tevatron. The first LHC run ended in Dec., 2010 with a total integrated luminosity of about 45 pb-1 delivered to the experiments.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Yesenia Hernandez ◽  
Mukesh Kumar ◽  
Alan S. Cornell ◽  
Salah-Eddine Dahbi ◽  
Yaquan Fang ◽  
...  

AbstractAnomalies in multi-lepton final states at the Large Hadron Collider (LHC) have been reported in Refs. (von Buddenbrock et al., J Phys G 45(11):115003, arXiv:1711.07874 [hep-ph], 2018; Buddenbrock et al., JHEP 1910:157, arXiv:1901.05300 [hep-ph], 2019). These can be interpreted in terms of the production of a heavy boson, H, decaying into a standard model (SM) Higgs boson, h, and a singlet scalar, S, which is treated as a SM Higgs-like boson. This process would naturally affect the measurement of the Wh signal strength at the LHC, where h is produced in association with leptons and di-jets. Here, h would be produced with lower transverse momentum, $$p_{Th}$$ p Th , compared to SM processes. Corners of the phase-space are fixed according to the model parameters derived in Refs. (von Buddenbrock et al., J Phys G 45(11):115003, arXiv:1711.07874 [hep-ph], 2018; von Buddenbrock et al., Eur Phys J C 76(10):580, arXiv:1606.01674 [hep-ph], 2016) without additional tuning, thus nullifying potential look-else-where effects or selection biases. Provided that no stringent requirements are made on $$p_{Th}$$ p Th or related observables, the signal strength of Wh is $$\mu (Wh)=2.41 \pm 0.37$$ μ ( W h ) = 2.41 ± 0.37 . This corresponds to a deviation from the SM of $$3.8\sigma $$ 3.8 σ . This result further strengthens the need to measure with precision the SM Higgs boson couplings in $$e^+e^-$$ e + e - , and $$e^-p$$ e - p collisions, in addition to pp collisions.


2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650005 ◽  
Author(s):  
O. M. Boyarkin ◽  
G. G. Boyarkina

Two most popular GUT scenarios, namely, the left–right symmetric model (LRM) and models coming from [Formula: see text] grand unification (effective rank 5 models (ER5M’s)) are considered. Both models forecast existence of the extra neutral gauge boson. Its contributions to the decay of the Higgs boson being an analog of the Standard Model (SM) Higgs boson [Formula: see text] and the process of the associated Higgs production with [Formula: see text] boson (Higgsstrahlung) [Formula: see text] are found. For both processes, deviations from the SM predicted by the LRM prove to be larger than that predicted by the ER5M’s. It is shown that in the case of the decay [Formula: see text] it is impossible to observe these deviations at the condition of the High Luminosity Large Hadron Collider. Investigation of the Higgsstrahlung disclosed that with its help one could make a choice between the SM and the SM extensions under consideration.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Yan-Ju Zhang ◽  
Jie-Fen Shen

AbstractWe investigate the prospects for discovering the Flavour Changing Neutral Current (FCNC) tqh couplings via the process $$pp\rightarrow th$$ p p → t h at the proposed High Energy Large Hadron Collider (HE-LHC) and Future Circular Collider in hadron-hadron mode (FCC-hh) including the realistic detector effects. The relevant SM backgrounds are considered in the cut based analysis to obtain the limits on the the branching ratios of $$t\rightarrow qh~(q=u,c)$$ t → q h ( q = u , c ) , followed by the leptonic decay channel of the top quark and diphoton decay channel of the Higgs boson. The upper limits on the FCNC branching ratios at 95% confidence level (CL) and the $$5\sigma $$ 5 σ discovery reach for the different integrated luminosities are obtained. It is shown that at the 27 TeV HE-LHC with an integrated luminosity of 15 ab$$^{-1}$$ - 1 and at the 100 TeV FCC-hh with an integrated luminosity of 30 ab$$^{-1}$$ - 1 , the BR($$t\rightarrow uh$$ t → u h ) (BR($$t\rightarrow ch$$ t → c h )) can be probed, respectively, to $$4.4~(6.4)\times 10^{-5}$$ 4.4 ( 6.4 ) × 10 - 5 and $$1.3~(1.6) \times 10^{-5}$$ 1.3 ( 1.6 ) × 10 - 5 at the 95% CL.


2003 ◽  
Vol 18 (21) ◽  
pp. 3591-3627
Author(s):  
Atul Gurtu

Electroweak data from the high energy electron–positron and proton–antiproton colliders are reviewed. On the whole the data is consistent with and supports the predictions of the electroweak theory. However, a crucial prediction of the theory remains to be verified: the existence of the Higgs boson and its light mass, less than 193 GeV, obtained from a fit to all the data within the electroweak framework. The lower limit on its mass from direct searches being 114 GeV, the mass of the Higgs is fixed within a narrow range which is expected to be explored at the Fermilab Tevatron experiments or later at the Large Hadron Collider at CERN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Alexiades Armenakas ◽  
Oliver K. Baker

AbstractWith the advent of the High-Luminosity Large Hadron Collider (HL-LHC) era, high energy physics (HEP) event selection will require new approaches to rapidly and accurately analyze vast databases. The current study addresses the enormity of HEP databases in an unprecedented manner—a quantum search using Grover’s Algorithm (GA) on an unsorted database, ATLAS Open Data, from the ATLAS detector. A novel method to identify rare events at 13 TeV in CERN’s LHC using quantum computing (QC) is presented. As indicated by the Higgs boson decay channel $$H\rightarrow ZZ^*\rightarrow 4l$$ H → Z Z ∗ → 4 l , the detection of four leptons in one event may be used to reconstruct the Higgs boson and, more importantly, evince Higgs boson decay to some new phenomena, such as $$H\rightarrow ZZ_d \rightarrow 4l$$ H → Z Z d → 4 l . Searching the dataset for collisions resulting in detection of four leptons using a Jupyter Notebook, a classical simulation of GA, and several quantum computers with multiple qubits, the current application was found to make the proper selection in the unsorted dataset. Quantum search efficacy was analyzed for the incoming HL-LHC by implementing the QC method on multiple classical simulators and IBM’s quantum computers with the IBM Qiskit Open Source Software. The current QC application provides a novel, high-efficiency alternative to classical database searches, demonstrating its potential utility as a rapid and increasingly accurate search method in HEP.


Sign in / Sign up

Export Citation Format

Share Document