scholarly journals Monopoles, Duality, and String Theory

2004 ◽  
Vol 19 (supp01) ◽  
pp. 145-154 ◽  
Author(s):  
Joe Polchinski

Dirac showed that the existence of magnetic monopoles would imply quantization of electric charge. I discuss the converse, and propose two 'principles of completeness' which I illustrate with various examples. Presented at the Dirac Centennial Symposium, Tallahassee, Dec. 6-7, 2002.

Author(s):  
H. J. D. Cole

AbstractDirac has suggested that the quantization of electric charge could be explained by the existence of magnetic monopoles. In view of this hypothesis, this paper investigates what theoretically would be the behaviour of such monopoles in a Wilson cloud chamber. The treatment, which for simplicity is basically classical, closely follows Bohr's work on the decrease of velocity and ionization properties of α- and β-particles, and expressions are derived for the rate of decrease of energy and the number of ion-pairs produced per centimetre by a monopole passing through a gas. These expressions are then discussed with particular reference to the case of heavy particles, and the main differences between them and the corresponding expressions for α-particles both as to range and ionization are indicated; these differences can be summarized by saying that monopoles have much shorter paths, but create many more ion-pairs per centimetre than α-particles. Also, the very sharp increase in the ionization at the end of the path of an electric particle is missing, the ionization for the monopole decreasing to a small amount near the end of the path.


1997 ◽  
Vol 12 (40) ◽  
pp. 3153-3159 ◽  
Author(s):  
Rainer W. Kühne

The possibility of the existence of magnetic charges is one of the greatest unsolved issues of the physics of this century. The concept of magnetic monopoles has at least two attractive features: (i) Electric and magnetic fields can be described equivalently. (ii) In contrast to quantum electrodynamics, models of monopoles are able to explain the quantization of electric charge. We suggest a quantum field theoretical model of the electromagnetic interaction that describes electricity and magnetism as equivalent as possible. This model requires the cross-section of Salam's "magnetic photon" to depend on the absolute motion of the electric charge with which it interacts. We suggest a tabletop experiment to verify this magnetic photon. Its discovery by the predicted effect would have far-reaching consequences: (i) Evidence for a new gauge boson and a new kind of radiation which may find applications in medicine. (ii) Evidence for symmetrized Maxwell equations. (iii) Evidence for an absolute rest frame that gives rise to local physical effects and violation of Einstein's relativity principle.


1993 ◽  
Vol 08 (21) ◽  
pp. 2023-2036 ◽  
Author(s):  
ASHOKE SEN

We show that in heterotic string theory compactified on a six-dimensional torus, the lower bound (Bogomol’nyi bound) on the dyon mass is invariant under the SL (2, ℤ) transformation that interchanges strong and weak coupling limits of the theory. Elementary string excitations are also shown to satisfy this lower bound. Finally, we identify specific monopole solutions that are related via the strong-weak coupling duality transformation to some of the elementary particles saturating the Bogomol’nyi bound, and these monopoles are shown to have the same mass and degeneracy of states as the corresponding elementary particles.


2015 ◽  
Vol 93 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Jesús Martín Romero ◽  
Mauricio Bellini

Using the formalism of Weitzenböck induced matter theory (WIMT) we calculate the gravito-magnetic charge on a topological string, which is induced through a foliation on a five-dimensional (5D) gravito-electromagnetic vacuum defined on a 5D Ricci-flat metric, which produces symmetry breaking on an axis. We obtain the resonant result that the quantized charges are induced on the effective four-dimensional hypersurface. This quantization describes the behavior of a test gravito-electric charge in the vicinity of a point gravito-magnetic monopole, both geometrically induced from a 5D vacuum. We demonstrate how gravito-magnetic monopoles would decrease exponentially during the inflationary expansion of the universe.


1993 ◽  
Vol 409 (2) ◽  
pp. 363-381 ◽  
Author(s):  
Jerome P. Gauntlett ◽  
Jeffrey A. Harvey ◽  
James T. Liu

2016 ◽  
Vol 31 (24) ◽  
pp. 1650133
Author(s):  
Yanbin Deng ◽  
Changyu Huang ◽  
Yong-Chang Huang

It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.


2011 ◽  
Vol 66 (5) ◽  
pp. 329-338 ◽  
Author(s):  
Harald Stumpf

By Lochak (theory) and Urutskoev (experiment) the hypothesis has been suggested that during electric discharges in water (fluids) light magnetic monopoles can be created which according to Lochak should be considered as a kind of excited neutrinos. Based on a quantum field theoretic development of de Broglie’s and Heisenberg’s fusion ideas and the results of preceding papers a transparent proof is given that such magnetic monopoles can occur during discharges. In the theoretical description these circumstances are formulated within the scope of an extended (effective) Standard Model and the monopoles with vanishing electric charge arise from neutrinos whose states are modified by the symmetry breaking caused by the discharge. In the introduction some technical implications are referred to. The article is divided into two parts.


Sign in / Sign up

Export Citation Format

Share Document