scholarly journals Constraining the existence of magnetic monopoles by Dirac-dual electric charge renormalization effect under the Planck scale limit

2016 ◽  
Vol 31 (24) ◽  
pp. 1650133
Author(s):  
Yanbin Deng ◽  
Changyu Huang ◽  
Yong-Chang Huang

It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.

Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 117 ◽  
Author(s):  
Vicente Vento

Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays.


2019 ◽  
Vol 34 (05) ◽  
pp. 1950029 ◽  
Author(s):  
Coraline Stasser ◽  
Michaël Sarrazin

Many-brane Universes are at the heart of several cosmological scenarios related to physics beyond the Standard Model. It is then a major concern to constrain these approaches. Two-brane Universes involving [Formula: see text]-broken 5D bulks are among the cosmological models of interest. They also allow considering matter exchange between branes, a possible way to test these scenarios. Neutron disappearance (reappearance) toward (from) the hidden brane is currently tested with high-precision experiments to constrain the coupling constant [Formula: see text] between the visible and hidden neutron sectors. When dealing with the sub-GeV-scale quantum dynamics of fermions, any pair of braneworlds can be described by a noncommutative two-sheeted space–time [Formula: see text] from which [Formula: see text] emerges. Nevertheless, the calculation of the formal link between [Formula: see text] for a neutron and [Formula: see text]-broken 5D bulks remains an open problem until now although necessary to constrain these braneworld scenarios. Thanks to a phenomenological model, we derive [Formula: see text] — for a neutron — between the two braneworlds endowed with their own copy of the Standard Model in an [Formula: see text]-broken 5D bulk. Constraints on interbrane distance and brane energy scale (or brane thickness) are discussed. While brane energy scale below the GUT scale is excluded, energy scale up to the Planck limit allows neutron swapping detection in forthcoming experiments.


2001 ◽  
Vol 10 (01) ◽  
pp. 57-88 ◽  
Author(s):  
UWE R. FISCHER ◽  
GRIGORI E. VOLOVIK

We give an account of the physical behaviour of a quasiparticle horizon due to non-Lorentz invariant modifications of the effective spacetime experienced by the quasiparticles ("matter") for high momenta. By introducing a "relativistic" conserved energy–momentum tensor, we derive quasi-equilibrium states of the fluid across the "Landau" quasiparticle horizon at temperatures well above the quantum Hawking temperature. Nonlinear dispersion of the quasiparticle energy spectrum is instrumental for quasiparticle communication and exchange across the horizon. It is responsible for the establishment of the local thermal equilibrium across the horizon with the Tolman temperature being inhomogeneous behind the horizon. The inhomogeneity causes relaxation of the quasi-equilibrium states due to scattering of thermal quasiparticles, which finally leads to a shrinking black hole horizon. This process serves as the classical thermal counterpart of the quantum effect of Hawking radiation and will allow for an observation of the properties of the horizon at temperatures well above the Hawking temperature. We discuss the thermal entropy related to the horizon. We find that only the first nonlinear correction to the energy spectrum is important for the thermal properties of the horizon. They are fully determined by an energy of order E Planck (T/E Planck )1/3, which is well below the Planck energy scale E Planck , so that Planck scale physics is not involved in determining thermal quantities related to the horizon.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 112
Author(s):  
Carl F. Diether III ◽  
Joy Christian

Two of the major open questions in particle physics are: (1) Why do the elementary fermionic particles that are so far observed have such low mass-energy compared to the Planck energy scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic and strong force energies of point-like charged fermions in the vicinity of the Planck scale? In this paper, using a hitherto unrecognised mechanism derived from the non-linear amelioration of the Dirac equation known as the Hehl–Datta equation within the Einstein–Cartan–Sciama–Kibble (ECSK) extension of general relativity, we present detailed numerical estimates suggesting that the mechanical energy arising from the gravitationally coupled self-interaction in the ECSK theory can address both of these questions in tandem.


2015 ◽  
Vol 93 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Jesús Martín Romero ◽  
Mauricio Bellini

Using the formalism of Weitzenböck induced matter theory (WIMT) we calculate the gravito-magnetic charge on a topological string, which is induced through a foliation on a five-dimensional (5D) gravito-electromagnetic vacuum defined on a 5D Ricci-flat metric, which produces symmetry breaking on an axis. We obtain the resonant result that the quantized charges are induced on the effective four-dimensional hypersurface. This quantization describes the behavior of a test gravito-electric charge in the vicinity of a point gravito-magnetic monopole, both geometrically induced from a 5D vacuum. We demonstrate how gravito-magnetic monopoles would decrease exponentially during the inflationary expansion of the universe.


The characteristic energy scale of superstring theory, which attempts to unify all the interactions of matter with gravity, is the Planck energy of 10 28 eV. Although this energy is 16 orders of magnitude higher than currently accessible energies, it is important to consider the nature of string physics in this region since it could shed light on the non-perturbative physics at the Planck scale, which determines the structure of the vacuum. In this paper I review some recent attempts to explore this domain. In particular, I discuss string scattering at very high energies, the indications of the existence of a large symmetry that is restored at short distances and the possible breakdown of our concepts of space-time at these energies.


2013 ◽  
Vol 28 (07) ◽  
pp. 1350016 ◽  
Author(s):  
JUAN SEBASTIÁN ARDENGHI ◽  
ALFREDO JUAN ◽  
MARIO CASTAGNINO

The aim of this work is to apply the observable-state model for the quantum field theory of a ϕn self-interaction. We show how to obtain finite values for the two-point and n-point correlation functions without introducing counterterms in the Lagrangian. Also, we show how to obtain the renormalization group equation for the mass and the coupling constant. Finally, we find the dependence of the coupling constant with the energy scale and we discuss the validity of the observable-state model in terms of the projection procedure.


Author(s):  
Laura Patrizii ◽  
Zouleikha Sahnoun ◽  
Vincent Togo

A paper titled ‘Quantised singularities in the electromagnetic field’ by P.A.M. Dirac appeared in 1931 in the Proceedings of the Royal Society A . The paper concerned ‘[ ·  s ] the reason for the existence of a smallest electric charge.’ Dirac showed that the quantization of the electric charge follows from the existence of at least one free magnetic charge, finding ‘a connection between the smallest electric charge and the smallest magnetic pole’, a connection called since then the ‘Dirac relation’. That seminal paper marked the opening of a new research field that has grown considerably since then. The search for magnetic monopoles in cosmic radiation encompasses many fields, from particle physics to astrophysics, from the extremely small to cosmology. This article is part of a discussion meeting issue ‘Topological avatars of new physics’.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


Sign in / Sign up

Export Citation Format

Share Document