scholarly journals NUCLEON AND PION FORM FACTORS IN DIFFERENT FORMS OF RELATIVISTIC KINEMATICS

2005 ◽  
Vol 20 (08n09) ◽  
pp. 1601-1606 ◽  
Author(s):  
B. DESPLANQUES

Calculations of form factors in different forms of relativistic kinematics are presented. They involve the instant, front and point forms. In the two first cases, different kinematical conditions are considered while in the latter case, both a Dirac-inspired approach and a hyperplane-based one are incorporated in our study. Numerical results are presented for the pion form factors with emphasis on both the low and high Q2 range. A new argument is presented, explaining why some approaches do considerably much better than other ones when only a single-particle current is considered.

Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


2014 ◽  
Vol 668-669 ◽  
pp. 1130-1133
Author(s):  
Lei Hou ◽  
Xian Yan Sun ◽  
Lin Qiu

In this paper, we employ semi-discrete finite element method to study the convergence of the Cauchy equation. The convergent order can reach. In numerical results, the space domain is discrete by Lagrange interpolation function with 9-point biquadrate element. The time domain is discrete by two difference schemes: Euler and Crank-Nicolson scheme. Numerical results show that the convergence of Crank-Nicolson scheme is better than that of Euler scheme.


1996 ◽  
Vol 07 (01) ◽  
pp. 33-41 ◽  
Author(s):  
T. E. SIMOS

A two-step method is developed for computing eigenvalues and resonances of the radial Schrödinger equation. Numerical results obtained for the integration of the eigenvalue and the resonance problem for several potentials show that this new method is better than other similar methods.


1959 ◽  
Vol 14 (8) ◽  
pp. 699-707
Author(s):  
H. Eisenlohr ◽  
H. Salecker

This article deals with the form factor of the anomalous magnetic moment distribution of proton and neutron. It is first shown with three examples that the magnetic root mean square radius cannot be taken from the existing experiments with sufficient accuracy. Satisfactory agreement with the experimental results can be obtained with arbitrary values of rm2. We calculate the magnetic moment form factors depending on the energy momentum transfer q2 in perturbation theory and the 2 π meson contribution to the isotopic vector form factor with dispersion relations also in relation to q2, with and without π meson form factor. We get better agreement of the shape of the form factor with the phenomenological form factor of HOFSTADTER at the expense of the static magnetic moment. But the contribution of the high q2 values is still too large i.e. the structure is somewhat too concentrated **


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Hazizah Mohd Ijam ◽  
Mohamed Suleiman ◽  
Ahmad Fadly Nurullah Rasedee ◽  
Norazak Senu ◽  
Ali Ahmadian ◽  
...  

We describe the development of a 2-point block backward difference method (2PBBD) for solving system of nonstiff higher-order ordinary differential equations (ODEs) directly. The method computes the approximate solutions at two points simultaneously within an equidistant block. The integration coefficients that are used in the method are obtained only once at the start of the integration. Numerical results are presented to compare the performances of the method developed with 1-point backward difference method (1PBD) and 2-point block divided difference method (2PBDD). The result indicated that, for finer step sizes, this method performs better than the other two methods, that is, 1PBD and 2PBDD.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xue-Feng Zhang ◽  
Qun-Fa Cui ◽  
Shi-Liang Wu

Three kinds of preconditioners are proposed to accelerate the generalized AOR (GAOR) method for the linear system from the generalized least squares problem. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned generalized AOR (PGAOR) methods is better than that of the original GAOR methods. Finally, some numerical results are reported to confirm the validity of the proposed methods.


2019 ◽  
Vol 14 (31) ◽  
pp. 28-36
Author(s):  
Ali A. Alzubadi

Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.


2021 ◽  
pp. 588-593
Author(s):  
Ali J. Mohammad ◽  
S. A. Abdul-Hammed ◽  
T. A. Abdul-Qader

In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence  whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.


Sign in / Sign up

Export Citation Format

Share Document