scholarly journals SIGNATURES OF SINGLET NEUTRINOS IN LARGE EXTRA DIMENSIONS AT THE LHC

2009 ◽  
Vol 24 (28n29) ◽  
pp. 5173-5215 ◽  
Author(s):  
DOUGLAS M. GINGRICH

It is a challenge to explain why neutrinos are so light compared to other leptons. Small neutrino masses can be explained if right-handed fermions propagate in large extra dimensions. Fermions propagating in the bulk would have implications on Higgs boson decays. If the Higgs boson is discovered at the Large Hadron Collider (LHC), a detailed analysis may reveal the presence of large extra dimensions. This paper reviews the status of large extra-dimensional models in the context of the current limits on Higgs boson masses and the fundamental Planck scale in extra dimensions.

2007 ◽  
Vol 16 (03) ◽  
pp. 841-851 ◽  
Author(s):  
THOMAS J. HUMANIC ◽  
BENJAMIN KOCH ◽  
HORST STÖCKER

The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb + Pb collisions.


2008 ◽  
Vol 23 (06) ◽  
pp. 823-834 ◽  
Author(s):  
SANTOSH KUMAR RAI

A major focus at the Large Hadron Collider (LHC) will be on Higgs boson studies and it would be an interesting prospect to simultaneously probe for physics beyond the Standard Model in the Higgs signals. In this work we show as to what extent, the effects of universal extra dimension (UED) can be isolated at the LHC through the Higgs signals. By doing a detailed study of the different uncertainties involved in the measurement of the rates for the process pp →h →γγ, we estimate the extent to which these uncertainties can mask the effects of the contributions coming from UED.


2009 ◽  
Vol 24 (06) ◽  
pp. 1105-1118
Author(s):  
NICOLAS BOCK ◽  
THOMAS J. HUMANIC

The framework of large extra dimensions provides a way to explain why gravity is weaker than the other forces in nature. A consequence of this model is the possible production of D-dimensional black holes in high energy p–p collisions at the Large Hadron Collider. The present work uses the CATFISH black hole generator to study quantitatively how these events could be observed in the hadronic channel at midrapidity using a particle-tracking detector.


2007 ◽  
Vol 22 (27) ◽  
pp. 5039-5051
Author(s):  
GEOFFREY N. TAYLOR

In this paper an overview of the Large Hadron Collider program and status is given, including a brief description of the scientific background from which this ambitious program evolved. The emphasis is on the status of the Standard Model Higgs Boson, searches for which are the key component of the LHC program. A description of the ATLAS one of the two large general purpose experiments designed to detect evidence for the Higgs Boson and other data of interest to searches for physics beyond the standard model.


2004 ◽  
Vol 19 (37) ◽  
pp. 2727-2744 ◽  
Author(s):  
SABINE HOSSENFELDER

Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. Little is known about the fundamental theory valid at Planckian energies, except that it necessarily seems to imply the occurrence of a minimal length scale, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. Motivated by String Theory, the models of large extra dimensions lower the Planck scale to values soon accessible. These models predict a vast number of quantum gravity effects at the lowered Planck scale, among them the production of TeV-mass black holes and gravitons. Within the extra dimensional scenario, the minimal length also comes into the reach of experiment and sets a fundamental limit to short distance physics. We review the status of Planck scale physics in these effective models.


2011 ◽  
Vol 2011 (5) ◽  
Author(s):  
S. Chatrchyan ◽  
◽  
V. Khachatryan ◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document