scholarly journals SIGNATURES FOR BLACK HOLE PRODUCTION FROM HADRONIC OBSERVABLES AT THE LARGE HADRON COLLIDER

2007 ◽  
Vol 16 (03) ◽  
pp. 841-851 ◽  
Author(s):  
THOMAS J. HUMANIC ◽  
BENJAMIN KOCH ◽  
HORST STÖCKER

The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb + Pb collisions.

2009 ◽  
Vol 24 (06) ◽  
pp. 1105-1118
Author(s):  
NICOLAS BOCK ◽  
THOMAS J. HUMANIC

The framework of large extra dimensions provides a way to explain why gravity is weaker than the other forces in nature. A consequence of this model is the possible production of D-dimensional black holes in high energy p–p collisions at the Large Hadron Collider. The present work uses the CATFISH black hole generator to study quantitatively how these events could be observed in the hadronic channel at midrapidity using a particle-tracking detector.


2008 ◽  
Vol 23 (35) ◽  
pp. 2987-2996 ◽  
Author(s):  
ARUNAVA ROY ◽  
MARCO CAVAGLIÀ

Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but effective method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show that the measure of the dilepton invariant mass provides a promising signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5173-5215 ◽  
Author(s):  
DOUGLAS M. GINGRICH

It is a challenge to explain why neutrinos are so light compared to other leptons. Small neutrino masses can be explained if right-handed fermions propagate in large extra dimensions. Fermions propagating in the bulk would have implications on Higgs boson decays. If the Higgs boson is discovered at the Large Hadron Collider (LHC), a detailed analysis may reveal the presence of large extra dimensions. This paper reviews the status of large extra-dimensional models in the context of the current limits on Higgs boson masses and the fundamental Planck scale in extra dimensions.


Author(s):  
Aghil Alaee ◽  
Marcus Khuri ◽  
Hari Kunduri

We present arguments that show why it is difficult to see rich extra dimensions in the universe. Conditions are found where significant size and variation of the extra dimensions in a Kaluza–Klein compactification lead to a black hole in the lower-dimensional theory. The idea is based on the hoop conjecture concerning black hole existence, as well as on the observation that dimensional reduction on macroscopically large, twisted, or highly dynamical extra dimensions contributes positively to the energy density in the lower-dimensional theory and can induce gravitational collapse. A threshold for the size is postulated on the order of [Formula: see text][Formula: see text]m, whereby extra dimensions of length above this level must lie inside black holes, thus cloaking them from the view of outside observers. The threshold depends on the size of the universe, leading to speculation that in the early stages of evolution truly macroscopic and large extra dimensions would have been visible.


2004 ◽  
Vol 19 (29) ◽  
pp. 4899-4951 ◽  
Author(s):  
PANAGIOTA KANTI

We start by reviewing the existing literature on the creation of black holes during high-energy particle collisions, both in the absence and in the presence of extra, compact, spacelike dimensions. Then, we discuss in detail the properties of the produced higher-dimensional black holes, namely the horizon radius, temperature and life-time, as well as the physics that governs the evaporation of these objects, through the emission of Hawking radiation. We first study the emission of visible Hawking radiation on the brane: we derive a master equation for the propagation of fields with arbitrary spin in the induced-on-the-brane black hole background, and we review all existing results in the literature for the emission of scalars, fermions and gauge bosons during the spin-down and Schwarzschild phases of the life of the black hole. Both analytical and numerical results for the graybody factors and radiation spectra are reviewed and exact results for the number and type of fields emitted on the brane as a function of the dimensionality of space–time are discussed. We finally study the emission of Hawking radiation in the bulk: graybody factors and radiation spectra are presented for the emission of scalar modes, and the ratio of the missing energy over the visible one is calculated for different values of the number of extra dimensions.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750043
Author(s):  
M. J. Soleimani ◽  
N. Abbasvandi ◽  
G. Gopir ◽  
Zainol Abidin Ibrahim ◽  
Shahidan Radiman ◽  
...  

We study the thermodynamics of charged rotating black hole in large extra dimensions scenario where quantum gravity effects are taken into account. We consider the effects of minimal length, minimal momentum, and maximal momentum as natural cutoffs on the thermodynamics of charged rotating TeV-scale black holes. In this framework, the effect of the angular momentum and charge on the thermodynamics of the black hole are discussed. We focus also on frame dragging and Sagnac effect of the micro black holes.


2006 ◽  
Vol 21 (23n24) ◽  
pp. 4979-4992 ◽  
Author(s):  
KOUROSH NOZARI ◽  
S. HAMID MEHDIPOUR

Bekenstein–Hawking formalism of black hole thermodynamics should be modified to incorporate quantum gravitational effects. Generalized Uncertainty Principle (GUP) provides a suitable framework to perform such modifications. In this paper, we consider a general form of GUP to find black hole thermodynamics in a model universe with large extra dimensions. We will show that black holes radiate mainly in the four-dimensional brane. Existence of black holes remnants as a possible candidate for dark matter is discussed.


2001 ◽  
Vol 16 (13) ◽  
pp. 2399-2410 ◽  
Author(s):  
FRED C. ADAMS ◽  
GORDON L. KANE ◽  
MANASSE MBONYE ◽  
MALCOLM J. PERRY

We consider proton decay in theories that contain large extra dimensions. If virtual black hole states are allowed by the theory, as is generally the case, then proton decay can proceed via virtual black holes. The experimental limits on the proton lifetime place strong constraints on the quantum gravity scale M qg (the effective Planck mass). For most theories, this implies a lower bound of M qg >1016 GeV. The corresponding bound on the size of large extra dimensions is ℓ<106/n×10-30 cm, where n is the number of such dimensions. Regrettably, for most theories this limit rules out the possibility of observing large extra dimensions at accelerators or in millimeter scale gravity experiments. Conversely, proton decay could be dominated by virtual black holes, providing an experimental probe to study stringy quantum gravity physics.


Sign in / Sign up

Export Citation Format

Share Document