scholarly journals A NEAR-NHEK/CFT CORRESPONDENCE

2010 ◽  
Vol 25 (30) ◽  
pp. 5517-5527 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider excitations around the recently introduced near-NHEK metric describing the near-horizon geometry of the near-extremal four-dimensional Kerr black hole. This geometry has a U (1)L × U (1)R isometry group which can be enhanced to a pair of commuting Virasoro algebras. We present boundary conditions for which the conserved charges of the corresponding asymptotic symmetries are well defined and nonvanishing and find the central charges cL = 12J/ℏ and cR = 0 where J is the angular momentum of the black hole. Applying the Cardy formula reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr black hole is holographically dual to a nonchiral two-dimensional conformal field theory.

2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2012 ◽  
Vol 27 (08) ◽  
pp. 1250046 ◽  
Author(s):  
A. M. GHEZELBASH

We study the extremal rotating spacetimes with a NUT twist in the context of recently proposed Kerr/CFT correspondence. The Kerr/CFT correspondence states that the near-horizon states of an extremal four (or higher) dimensional black hole could be identified with a certain chiral conformal field theory. The corresponding Virasoro algebra is generated with a class of diffeomorphism which preserves an appropriate boundary condition on the near-horizon geometry. We combine the calculated central charges with the expected form of the temperature, using the Cardy formula to obtain the microscopically entropy of the extremal rotating spacetimes with a NUT twist. All results are in agreement with the macroscopic entropy of the extremal spacetimes.


2011 ◽  
Vol 26 (18) ◽  
pp. 3077-3090 ◽  
Author(s):  
BRADLY K. BUTTON ◽  
LEO RODRIGUEZ ◽  
CATHERINE A. WHITING ◽  
TUNA YILDIRIM

We show that the near horizon regime of a Kerr–Newman AdS (KNAdS) black hole, given by its two-dimensional analogue a là Robinson and Wilczek (Phys. Rev. Lett.95, 011303 (2005)), is asymptotically AdS2 and dual to a one-dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy–momentum tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein–Hawking entropy via Cardy's formula. Our derived central charge also agrees with the near extremal Kerr/CFT correspondence (Phys. Rev. D80, 124008 (2009)) in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two-dimensional analogue (RW2DA) to conformal matter.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342012 ◽  
Author(s):  
BIN CHEN ◽  
JIA-JU ZHANG

The area law of Bekenstein–Hawking entropy of the black hole suggests that the black hole should have a lower-dimensional holographic description. It has been found recently that a large class of rotating and charged black holes could be holographically described a two-dimensional (2D) conformal field theory (CFT). We show that the universal information of the dual CFT, including the central charges and the temperatures, is fully encoded in the thermodynamics laws of both outer and inner horizons. These laws, characterizing how the black hole responds under the perturbation, allows us to read different dual pictures with respect to different kinds of perturbations. The remarkable effectiveness of this thermodynamics method suggest that the inner horizon could play a key role in the study of holographic description of the black hole.


2010 ◽  
Vol 25 (20) ◽  
pp. 3965-3973 ◽  
Author(s):  
JØRGEN RASMUSSEN

The near-horizon geometry of the extremal four-dimensional Kerr black hole and certain generalizations thereof has an SL (2, ℝ) × U (1) isometry group. Excitations around this geometry can be controlled by imposing appropriate boundary conditions. For certain boundary conditions, the U(1) isometry is enhanced to a Virasoro algebra. Here, we propose a free-field construction of this Virasoro algebra.


2009 ◽  
Vol 24 (01) ◽  
pp. 141-159 ◽  
Author(s):  
MOHSEN ALISHAHIHA ◽  
SUBIR MUKHOPADHYAY

In this paper we discuss a possible holographic dual of the two-dimensional conformal field theory associated with the world-sheet of a macroscopic superstring in a compactification on a four-torus. We assume that the near-horizon geometry of the black string has symmetries of AdS 3×S3×T4 and construct a sigma model in the bulk. Analyzing the symmetries of the bulk theory and comparing them with those of the CFT in a special light-cone gauge, we find agreement between global symmetries. Due to nonstandard gauge realization it is not clear how affine symmetries can be realized.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document